論文の概要: Synthetic Data Generation for Bridging Sim2Real Gap in a Production Environment
- arxiv url: http://arxiv.org/abs/2311.11039v2
- Date: Fri, 10 May 2024 11:48:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 20:27:06.848447
- Title: Synthetic Data Generation for Bridging Sim2Real Gap in a Production Environment
- Title(参考訳): 生産環境におけるブリッジングSim2リアルギャップの合成データ生成
- Authors: Parth Rawal, Mrunal Sompura, Wolfgang Hintze,
- Abstract要約: ドメイン知識は、コンピュータビジョンアプリケーションにおけるシミュレーションを現実のギャップにブリッジするのに不可欠である。
本稿では,生産環境における部品および組立部品の合成データ生成手法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic data is being used lately for training deep neural networks in computer vision applications such as object detection, object segmentation and 6D object pose estimation. Domain randomization hereby plays an important role in reducing the simulation to reality gap. However, this generalization might not be effective in specialized domains like a production environment involving complex assemblies. Either the individual parts, trained with synthetic images, are integrated in much larger assemblies making them indistinguishable from their counterparts and result in false positives or are partially occluded just enough to give rise to false negatives. Domain knowledge is vital in these cases and if conceived effectively while generating synthetic data, can show a considerable improvement in bridging the simulation to reality gap. This paper focuses on synthetic data generation procedures for parts and assemblies used in a production environment. The basic procedures for synthetic data generation and their various combinations are evaluated and compared on images captured in a production environment, where results show up to 15% improvement using combinations of basic procedures. Reducing the simulation to reality gap in this way can aid to utilize the true potential of robot assisted production using artificial intelligence.
- Abstract(参考訳): 合成データは、オブジェクト検出、オブジェクトセグメンテーション、および6Dオブジェクトポーズ推定などのコンピュータビジョンアプリケーションにおけるディープニューラルネットワークのトレーニングに最近使用されている。
ここでのドメインのランダム化は、シミュレーションを現実のギャップに還元する上で重要な役割を果たす。
しかし、この一般化は複雑なアセンブリを含む生産環境のような特殊な領域では有効ではないかもしれない。
合成画像で訓練された個々の部品は、はるかに大きな集合体に統合され、それらの部品と区別できず、偽陽性を生じるか、あるいは偽陰性を引き起こすのに十分な部分閉塞となる。
これらのケースではドメイン知識が不可欠であり、合成データの生成中に効果的に考えられた場合、シミュレーションを現実のギャップにブリッジする際の大幅な改善が示される。
本稿では,生産環境における部品および組立部品の合成データ生成手法について述べる。
合成データ生成の基本手順とその各種組み合わせを、製造環境で撮影された画像と比較し、基本手順の組み合わせを用いて最大15%改善した結果を示す。
この方法でシミュレーションを現実のギャップに還元することは、人工知能を用いたロボット支援生産の真の可能性を活用するのに役立つ。
関連論文リスト
- WasteGAN: Data Augmentation for Robotic Waste Sorting through Generative Adversarial Networks [7.775894876221921]
ムダGANと呼ばれる新しいGANアーキテクチャに基づくデータ拡張手法を提案する。
提案手法は,ラベル付きサンプルのごく限られたセットから,セマンティックセグメンテーションモデルの性能を向上させることができる。
次に、ムダGAN合成データに基づいて訓練されたモデルから予測される高品質なセグメンテーションマスクを活用し、セグメンテーション・アウェア・グルーピング・ポーズを計算する。
論文 参考訳(メタデータ) (2024-09-25T15:04:21Z) - Efficient Data Collection for Robotic Manipulation via Compositional Generalization [70.76782930312746]
本研究では, 環境要因をデータから構成し, 未確認の要因の組み合わせに遭遇した場合に成功できることを示す。
コンポジションを利用したドメイン内データ収集手法を提案する。
ビデオはhttp://iliad.stanford.edu/robot-data-comp/で公開しています。
論文 参考訳(メタデータ) (2024-03-08T07:15:38Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
まず,合成から現実への新規な視点合成における合成データの影響について検討した。
本稿では,幾何制約を伴う多視点一貫した特徴を学習するために,幾何対応のコントラスト学習を導入することを提案する。
提案手法は,PSNR,SSIM,LPIPSの点で,既存の一般化可能な新規ビュー合成手法よりも高い画質で精細な画像を描画することができる。
論文 参考訳(メタデータ) (2023-03-20T12:06:14Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Synthetic Dataset Generation for Adversarial Machine Learning Research [0.0]
既存の逆例研究は、既存の自然画像データセットの上にデジタル挿入された摂動に焦点を当てている。
この敵の例の構築は現実的ではない、なぜなら攻撃者が検知や環境の影響により現実世界にそのような攻撃を展開することは困難、あるいは不可能であるかもしれないからである。
サイバー物理システムに対する敵の例をよりよく理解するために,シミュレーションによる実世界の近似を提案する。
論文 参考訳(メタデータ) (2022-07-21T19:14:44Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
そこで本研究では,高品質な自然主義的合成隠蔽顔を製造するための2つの手法を提案する。
両手法の有効性とロバスト性を実証的に示す。
我々は,RealOccとRealOcc-Wildという,微細なアノテーションを付加した高精細な実世界の顔データセットを2つ提示する。
論文 参考訳(メタデータ) (2022-05-12T17:03:57Z) - Fake It Till You Make It: Face analysis in the wild using synthetic data
alone [9.081019005437309]
合成データだけで顔関連コンピュータビジョンを野生で実行可能であることを示す。
本稿では、手続き的に生成された3次元顔モデルと手作り資産の包括的ライブラリを組み合わせることで、前例のないリアリズムによるトレーニング画像のレンダリングを行う方法について述べる。
論文 参考訳(メタデータ) (2021-09-30T13:07:04Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
本稿では, 精密農業における作物・雑草の分枝化問題に適用し, 共通データ増分法に関する代替手法を提案する。
我々は、最も関連性の高いオブジェクトクラス(作物や雑草)を合成されたクラスに置き換えることで、半人工的なサンプルを作成する。
RGBデータに加えて、近赤外(NIR)情報も考慮し、4つのチャネルマルチスペクトル合成画像を生成する。
論文 参考訳(メタデータ) (2020-09-12T08:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。