Bayesian Neural Networks: A Min-Max Game Framework
- URL: http://arxiv.org/abs/2311.11126v2
- Date: Wed, 29 May 2024 08:43:20 GMT
- Title: Bayesian Neural Networks: A Min-Max Game Framework
- Authors: Junping Hong, Ercan Engin Kuruoglu,
- Abstract summary: We formulate the BNN via game theory between the deterministic neural network $f$ and the sampling network $f + xi$ or $f + r*xi$.
Compared with previous BNN, BNN via game theory learns a solution space within a certain gap between the center $f$ and the sampling point $f + r*xi$.
The minimum points between $f$ and $f + r*xi$ become stable when the subspace dimension is large enough with a well-trained model $f$.
- Score: 1.8032347672439046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is a preliminary study of the robustness and noise analysis of deep neural networks via a game theory formulation Bayesian Neural Networks (BNN) and the maximal coding rate distortion loss. BNN has been shown to provide some robustness to deep learning, and the minimax method used to be a natural conservative way to assist the Bayesian method. Inspired by the recent closed-loop transcription neural network, we formulate the BNN via game theory between the deterministic neural network $f$ and the sampling network $f + \xi$ or $f + r*\xi$. Compared with previous BNN, BNN via game theory learns a solution space within a certain gap between the center $f$ and the sampling point $f + r*\xi$, and is a conservative choice with a meaningful prior setting compared with previous BNN. Furthermore, the minimum points between $f$ and $f + r*\xi$ become stable when the subspace dimension is large enough with a well-trained model $f$. With these, the model $f$ can have a high chance of recognizing the out-of-distribution data or noise data in the subspace rather than the prediction level, even if $f$ is in online training after a few iterations of true data. So far, our experiments are limited to MNIST and Fashion MNIST data sets, more experiments with realistic data sets and complicated neural network models should be implemented to validate the above arguments.
Related papers
- Neural-g: A Deep Learning Framework for Mixing Density Estimation [16.464806944964003]
Mixing (or prior) density estimation is an important problem in machine learning and statistics.
We propose neural-$g$, a new neural network-based estimator for $g$-modeling.
arXiv Detail & Related papers (2024-06-10T03:00:28Z) - Bayesian Inference with Deep Weakly Nonlinear Networks [57.95116787699412]
We show at a physics level of rigor that Bayesian inference with a fully connected neural network is solvable.
We provide techniques to compute the model evidence and posterior to arbitrary order in $1/N$ and at arbitrary temperature.
arXiv Detail & Related papers (2024-05-26T17:08:04Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - Does Preprocessing Help Training Over-parameterized Neural Networks? [19.64638346701198]
We propose two novel preprocessing ideas to bypass the $Omega(mnd)$ barrier.
Our results provide theoretical insights for a large number of previously established fast training methods.
arXiv Detail & Related papers (2021-10-09T18:16:23Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
We show that a class of variation-constrained neural networks can achieve near-parametric rate $n-1/2+delta$ for an arbitrarily small constant $delta$.
The result indicates that the neural function space needed for approximating smooth functions may not be as large as what is often perceived.
arXiv Detail & Related papers (2021-06-22T21:28:00Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - Towards Deep Learning Models Resistant to Large Perturbations [0.0]
Adversarial robustness has proven to be a required property of machine learning algorithms.
We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude.
arXiv Detail & Related papers (2020-03-30T12:03:09Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.