論文の概要: Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation
- arxiv url: http://arxiv.org/abs/2311.11176v2
- Date: Wed, 22 May 2024 14:13:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 20:13:50.723730
- Title: Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation
- Title(参考訳): 弱制御乳腺病変分節に対する CAM 誘導SAM の形態学的検討
- Authors: Xin Yue, Xiaoling Liu, Qing Zhao, Jianqiang Li, Changwei Song, Suqin Liu, Zhikai Yang, Guanghui Fu,
- Abstract要約: 早期乳房超音波画像における病変の断片化を弱体化するための新しい枠組みを提案する。
本手法は,形態的拡張とクラスアクティベーションマップ(CAM)誘導局所化を用いた。
このアプローチはピクセルレベルのアノテーションを必要としないため、データアノテーションのコストが削減される。
- 参考スコア(独自算出の注目度): 7.747608350830482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound imaging plays a critical role in the early detection of breast cancer. Accurate identification and segmentation of lesions are essential steps in clinical practice, requiring methods to assist physicians in lesion segmentation. However, ultrasound lesion segmentation models based on supervised learning require extensive manual labeling, which is both time-consuming and labor-intensive. In this study, we present a novel framework for weakly supervised lesion segmentation in early breast ultrasound images. Our method uses morphological enhancement and class activation map (CAM)-guided localization. Finally, we employ the Segment Anything Model (SAM), a computer vision foundation model, for detailed segmentation. This approach does not require pixel-level annotation, thereby reducing the cost of data annotation. The performance of our method is comparable to supervised learning methods that require manual annotations, achieving a Dice score of 74.39% and outperforming comparative supervised models in terms of Hausdorff distance in the BUSI dataset. These results demonstrate that our framework effectively integrates weakly supervised learning with SAM, providing a promising solution for breast cancer image analysis. The code for this study is available at: https://github.com/YueXin18/MorSeg-CAM-SAM.
- Abstract(参考訳): 乳がんの早期発見には超音波画像が重要な役割を担っている。
病変の正確な同定とセグメンテーションは、臨床実践において必須のステップであり、病変セグメンテーションにおいて医師を支援する方法が必要である。
しかし、教師付き学習に基づく超音波病変のセグメンテーションモデルでは、広範囲な手動ラベリングが必要となる。
そこで本研究では,早期乳房超音波画像における弱教師付き病変分割のための新しい枠組みを提案する。
本手法は,形態的拡張とクラスアクティベーションマップ(CAM)誘導局所化を用いた。
最後に,コンピュータビジョン基礎モデルであるSegment Anything Model (SAM) を用いて詳細なセグメンテーションを行う。
このアプローチはピクセルレベルのアノテーションを必要としないため、データアノテーションのコストが削減される。
本手法の性能は,手動のアノテーションを必要とする教師あり学習法に匹敵し,74.39%のDiceスコアを達成し,BUSIデータセットのハウスドルフ距離において比較教師ありモデルよりも優れている。
これらの結果から,本フレームワークはSAMと弱教師付き学習を効果的に統合し,乳がん画像解析に有効であることが示された。
この研究のコードは、https://github.com/YueXin18/MorSeg-CAM-SAMで公開されている。
関連論文リスト
- EP-SAM: Weakly Supervised Histopathology Segmentation via Enhanced Prompt with Segment Anything [3.760646312664378]
がんなどの疾患の病理診断は、従来、医師や病理医による形態学的特徴の評価に頼っていた。
近年,診断支援ツールとしてコンピュータ支援診断(CAD)システムの進歩が注目されている。
本稿では,クラスアクティベーションマップとSAMに基づく擬似ラベルを組み合わせ,弱教師付きセマンティックセマンティックセグメンテーション(WSSS)モデルを提案する。
論文 参考訳(メタデータ) (2024-10-17T14:55:09Z) - SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching [13.5553526185399]
自動結節分割は超音波画像におけるコンピュータ支援診断に不可欠である。
近年、SAMのようなセグメンテーション基礎モデルは、自然画像に顕著な一般化性を示している。
本研究では, セグメンテーション基盤モデルを利用して擬似ラベルを生成する, 弱教師付きフレームワークを考案する。
論文 参考訳(メタデータ) (2024-07-18T14:27:54Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
本研究では,乳房超音波(US)画像における乳房病変の鑑別を目的とした,関心領域(ROI)を自律的に生成することを目的とした,教師なし領域適応手法を提案する。
我々の半教師付き学習アプローチは、真のアノテーションを持つ小さな母乳USデータセットで訓練された原始モデルを利用する。
このモデルはドメイン適応タスクのために反復的に洗練され、当社のプライベートな無注釈乳房データセットに擬似マスクを生成します。
論文 参考訳(メタデータ) (2024-04-18T18:25:00Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
本稿では,マスセグメンテーションのための半弱教師付き学習フレームワークを提案する。
良好な性能を得るために, 限られた強ラベルのサンプルと十分な弱ラベルのサンプルを用いる。
CBIS-DDSMおよびINbreastデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T12:05:25Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
病理検体の全スライディング画像(WSI)における癌領域のアノテーションは、臨床診断、生医学研究、機械学習アルゴリズムの開発において重要な役割を担っている。
本稿では,外部トレーニングデータを必要とせず,単一のWSI上で粗いアノテーションを洗練するためのLC-MIL (Label Cleaning Multiple Instance Learning) を提案する。
乳癌リンパ節転移,肝癌,大腸癌の検体を併用した異種 WSI 実験の結果,LC-MIL は粗いアノテーションを著しく改善し,単一スライドから学習しながらも,最先端の代替品よりも優れていた。
論文 参考訳(メタデータ) (2021-09-22T15:06:06Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
我々は,大域的誘導ブロック(GGB)と乳房病変境界検出モジュールを備えた深部畳み込みニューラルネットワークを開発した。
当社のネットワークは、乳房超音波病変分割における他の医療画像分割方法および最近のセマンティックセグメンテーション方法よりも優れています。
論文 参考訳(メタデータ) (2021-04-05T13:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。