論文の概要: Enhancing Radiology Diagnosis through Convolutional Neural Networks for
Computer Vision in Healthcare
- arxiv url: http://arxiv.org/abs/2311.11234v1
- Date: Sun, 19 Nov 2023 05:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 21:34:07.492393
- Title: Enhancing Radiology Diagnosis through Convolutional Neural Networks for
Computer Vision in Healthcare
- Title(参考訳): 医療におけるコンピュータビジョンのための畳み込みニューラルネットワークによる放射線診断の強化
- Authors: Keshav Kumar K., Dr N V S L Narasimham
- Abstract要約: 放射線診断におけるCNNは、解釈可能性、有効性、倫理的問題に焦点をあてて検討される。
CNNは、特殊性、感度、正確性という点で優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transformative power of Convolutional Neural Networks (CNNs) in radiology
diagnostics is examined in this study, with a focus on interpretability,
effectiveness, and ethical issues. With an altered DenseNet architecture, the
CNN performs admirably in terms of particularity, sensitivity, as well as
accuracy. Its superiority over conventional methods is validated by comparative
analyses, which highlight efficiency gains. Nonetheless, interpretability
issues highlight the necessity of sophisticated methods in addition to
continuous model improvement. Integration issues like interoperability and
radiologists' training lead to suggestions for teamwork. Systematic
consideration of the ethical implications is carried out, necessitating
extensive frameworks. Refinement of architectures, interpretability, alongside
ethical considerations need to be prioritized in future work for responsible
CNN deployment in radiology diagnostics.
- Abstract(参考訳): 放射線診断における畳み込みニューラルネットワーク(CNN)の変換力について, 解釈可能性, 有効性, 倫理的問題に着目して検討した。
変更されたDenseNetアーキテクチャでは、CNNは特殊性、感度、精度の点で優れている。
従来の手法よりも優れていることは、効率向上を強調する比較分析によって検証される。
それでも、解釈可能性に関する問題は、継続的モデルの改善に加えて、洗練されたメソッドの必要性を強調している。
相互運用性や放射線技師のトレーニングといった統合問題は、チームワークの提案につながります。
倫理的含意を体系的に考慮し、広範な枠組みを必要とする。
アーキテクチャのリファインメント、解釈可能性、倫理的考察は、放射線診断におけるCNNの展開に責任を持つものとして、今後の研究において優先される必要がある。
関連論文リスト
- Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
医用イメージングに適した説明可能なAI手法を開発した。
我々は、画像領域と周波数領域の両方にわたるMRIスキャンを分析する畳み込みニューラルネットワーク(CNN)を採用している。
このアプローチは、初期のトレーニング効率を高めるだけでなく、追加機能がモデル予測にどのように影響するかの理解を深めます。
論文 参考訳(メタデータ) (2024-09-20T15:43:26Z) - Rad4XCNN: a new agnostic method for post-hoc global explanation of CNN-derived features by means of radiomics [0.26200292205757436]
本稿では,放射線学的特徴に固有の解釈可能性を持つCNN特徴の予測能力を高めるために,Rad4XCNNという新しい手法を提案する。
我々はRad4XCNNを、内部および外部の検証のためのオンラインデータセットと2つの社内データセットを含む超音波画像データセットで評価した。
論文 参考訳(メタデータ) (2024-04-26T15:02:39Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
信頼性を備えたAIモデルの構築は、特に医療などの規制領域において重要である。
これまでの研究では、畳み込みニューラルネットワークをバックボーンアーキテクチャとして使用していた。
本稿では,視覚変換器を用いた特徴学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T14:55:42Z) - Transparency of Deep Neural Networks for Medical Image Analysis: A
Review of Interpretability Methods [3.3918638314432936]
ディープニューラルネットワークは、多くのタスクにおいて、臨床医と同じまたはより良いパフォーマンスを示している。
現在のディープ・ニューラル・ソリューションは、意思決定プロセスに関する具体的な知識の欠如からブラックボックスと呼ばれる。
通常の臨床ワークフローに組み込む前に、ディープニューラルネットワークの解釈可能性を保証する必要がある。
論文 参考訳(メタデータ) (2021-11-01T01:42:26Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。