論文の概要: A Generative Model for Accelerated Inverse Modelling Using a Novel
Embedding for Continuous Variables
- arxiv url: http://arxiv.org/abs/2311.11343v2
- Date: Tue, 20 Feb 2024 21:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 20:07:09.316282
- Title: A Generative Model for Accelerated Inverse Modelling Using a Novel
Embedding for Continuous Variables
- Title(参考訳): 連続変数への新しい埋め込みを用いた高速化逆モデリングのための生成モデル
- Authors: S\'ebastien Bompas and Stefan Sandfeld
- Abstract要約: 材料科学において、望ましい性質を持つ急速プロトタイピングの課題は、しばしば適切な微細構造を見つけるために広範な実験を必要とする。
生成機械学習モデルを使用することは、計算コストの低減にも有効である。
これは、例えば、モデルへの条件付け入力として連続的なプロパティ変数を必要とするため、新しい課題が伴う。
本稿では,既存手法の欠点を考察し,浮動小数点数のバイナリ表現に基づく生成モデルの新たな埋め込み戦略と比較する。
これにより正規化の必要性を排除し、情報を保存し、生成モデルを条件付けするための汎用的な埋め込み空間を作成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In materials science, the challenge of rapid prototyping materials with
desired properties often involves extensive experimentation to find suitable
microstructures. Additionally, finding microstructures for given properties is
typically an ill-posed problem where multiple solutions may exist. Using
generative machine learning models can be a viable solution which also reduces
the computational cost. This comes with new challenges because, e.g., a
continuous property variable as conditioning input to the model is required. We
investigate the shortcomings of an existing method and compare this to a novel
embedding strategy for generative models that is based on the binary
representation of floating point numbers. This eliminates the need for
normalization, preserves information, and creates a versatile embedding space
for conditioning the generative model. This technique can be applied to
condition a network on any number, to provide fine control over generated
microstructure images, thereby contributing to accelerated materials design.
- Abstract(参考訳): 材料科学において、望ましい性質を持つ高速プロトタイピング材料の挑戦は、しばしば適切な微細構造を見つけるために広範囲な実験を必要とする。
さらに、与えられた性質に対する微細構造の発見は、一般に複数の解が存在する可能性のある不適切な問題である。
生成機械学習モデルを使用することは、計算コストの低減にも有効である。
これは、例えばモデルへの条件付け入力として連続プロパティ変数を必要とするため、新しい課題が伴う。
本稿では,既存手法の欠点を考察し,浮動小数点数のバイナリ表現に基づく生成モデルの新たな埋め込み戦略と比較する。
これにより正規化の必要性を排除し、情報を保存し、生成モデルを条件付けするための汎用的な埋め込み空間を作成する。
この手法は任意の数にネットワークを条件付けし、生成した微細構造画像のきめ細かい制御を提供し、加速材料設計に寄与することができる。
関連論文リスト
- Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Evaluating the diversity and utility of materials proposed by generative
models [38.85523285991743]
本稿では, 逆設計プロセスの一部として, 物理誘導結晶生成モデルという, 最先端の生成モデルを用いる方法を示す。
本研究は, 逆設計を改善するために, 生成モデルをどのように改善するかを示唆する。
論文 参考訳(メタデータ) (2023-08-09T14:42:08Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
拡散モデルは、多くの領域において、生成モデリングの一般的なアプローチとなっている。
本稿では,新しい構成演算子の利用を可能にする拡散モデルのエネルギーベースパラメータ化を提案する。
これらのサンプルは、幅広い問題にまたがって構成生成の顕著な改善につながっている。
論文 参考訳(メタデータ) (2023-02-22T18:48:46Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
レオロジー方程式は複雑な流体の内部応力と変形を関連づける。
データ駆動モデルは、高価な第一原理モデルに代わる、アクセス可能な代替手段を提供する。
複素流体の類似モデルの開発が遅れている。
論文 参考訳(メタデータ) (2022-10-10T04:35:31Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
本稿では,従来のモデルを用いることなく,データ駆動モデルを用いて素材の応答を予測することを提案する。
材料応答は、負荷条件と結果の変位および/または損傷場の暗黙のマッピングを学習することによってモデル化される。
本稿では,超弾性材料,異方性材料,脆性材料など,いくつかの例について提案手法の性能を実証する。
論文 参考訳(メタデータ) (2022-03-15T19:08:13Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。