論文の概要: Scientific Machine Learning for Modeling and Simulating Complex Fluids
- arxiv url: http://arxiv.org/abs/2210.04431v1
- Date: Mon, 10 Oct 2022 04:35:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 19:43:24.450037
- Title: Scientific Machine Learning for Modeling and Simulating Complex Fluids
- Title(参考訳): 複雑な流体のモデリングとシミュレーションのための科学機械学習
- Authors: Kyle R. Lennon, Gareth H. McKinley, James W. Swan
- Abstract要約: レオロジー方程式は複雑な流体の内部応力と変形を関連づける。
データ駆動モデルは、高価な第一原理モデルに代わる、アクセス可能な代替手段を提供する。
複素流体の類似モデルの開発が遅れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The formulation of rheological constitutive equations -- models that relate
internal stresses and deformations in complex fluids -- is a critical step in
the engineering of systems involving soft materials. While data-driven models
provide accessible alternatives to expensive first-principles models and less
accurate empirical models in many engineering disciplines, the development of
similar models for complex fluids has lagged. The diversity of techniques for
characterizing non-Newtonian fluid dynamics creates a challenge for classical
machine learning approaches, which require uniformly structured training data.
Consequently, early machine learning constitutive equations have not been
portable between different deformation protocols or mechanical observables.
Here, we present a data-driven framework that resolves such issues, allowing
rheologists to construct learnable models that incorporate essential physical
information, while remaining agnostic to details regarding particular
experimental protocols or flow kinematics. These scientific machine learning
models incorporate a universal approximator within a materially objective
tensorial constitutive framework. By construction, these models respect
physical constraints, such as frame-invariance and tensor symmetry, required by
continuum mechanics. We demonstrate that this framework facilitates the rapid
discovery of accurate constitutive equations from limited data, and that the
learned models may be used to describe more kinematically complex flows. This
inherent flexibility admits the application of these 'digital fluid twins' to a
range of material systems and engineering problems. We illustrate this
flexibility by deploying a trained model within a multidimensional
computational fluid dynamics simulation -- a task that is not achievable using
any previously developed data-driven rheological equation of state.
- Abstract(参考訳): レオロジー構成方程式の定式化 -- 複雑な流体の内部応力と変形を関連づけるモデル -- は、軟質材料を含むシステムの工学における重要なステップである。
データ駆動型モデルは、高価な第一原理モデルの代替となり、多くの工学分野において精度の低い経験モデルを提供するが、複雑な流体に対する同様のモデルの開発は遅れている。
非ニュートン流体力学を特徴付けるテクニックの多様性は、一様構造化されたトレーニングデータを必要とする古典的な機械学習アプローチの挑戦を生み出している。
したがって、初期の機械学習構成方程式は、異なる変形プロトコルや機械的観測装置間では可搬性がない。
本稿では,このような問題を解決するためのデータ駆動型フレームワークを提案する。そこでは,特定の実験プロトコルやフロー・キネマティックスの詳細によらず,本質的な物理情報を含む学習可能なモデルを構築することができる。
これらの科学的機械学習モデルは、物質的に客観的なテンソル構成フレームワークに普遍近似器を組み込む。
構成上、これらのモデルは、連続体力学によって要求されるフレーム不変性やテンソル対称性のような物理的制約を扱う。
この枠組みは, 限られたデータから正確な構成方程式を迅速に発見し, よりキネマティックに複雑な流れを記述するために, 学習モデルを用いることを実証する。
この固有の柔軟性は、これらの「デジタル流体双対」を様々な材料システムや工学的問題に適用することを認める。
私たちは、トレーニングされたモデルを多次元計算流体力学シミュレーションにデプロイすることで、この柔軟性を説明します。
関連論文リスト
- Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
エラスト塑性の定式化のモジュラリティに頼って,データの変動量に対処できるハイブリッドフレームワークについて論じる。
発見された物質モデルは、よく補間できるだけでなく、トレーニングデータの領域外から熱力学的に一貫した方法で正確な外挿を可能にする。
論文 参考訳(メタデータ) (2022-10-15T17:35:23Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。