論文の概要: Symmetry-invariant quantum machine learning force fields
- arxiv url: http://arxiv.org/abs/2311.11362v1
- Date: Sun, 19 Nov 2023 16:15:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 20:43:41.292982
- Title: Symmetry-invariant quantum machine learning force fields
- Title(参考訳): 対称性不変量子機械学習力場
- Authors: Isabel Nha Minh Le, Oriel Kiss, Julian Schuhmacher, Ivano Tavernelli
and Francesco Tacchino
- Abstract要約: 我々は、データに着想を得た、広範囲な物理関連対称性の集合を明示的に組み込んだ量子ニューラルネットワークを設計する。
この結果から,分子力場生成は量子機械学習の枠組みを生かして著しく利益を得る可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques are essential tools to compute efficient, yet
accurate, force fields for atomistic simulations. This approach has recently
been extended to incorporate quantum computational methods, making use of
variational quantum learning models to predict potential energy surfaces and
atomic forces from ab initio training data. However, the trainability and
scalability of such models are still limited, due to both theoretical and
practical barriers. Inspired by recent developments in geometric classical and
quantum machine learning, here we design quantum neural networks that
explicitly incorporate, as a data-inspired prior, an extensive set of
physically relevant symmetries. We find that our invariant quantum learning
models outperform their more generic counterparts on individual molecules of
growing complexity. Furthermore, we study a water dimer as a minimal example of
a system with multiple components, showcasing the versatility of our proposed
approach and opening the way towards larger simulations. Our results suggest
that molecular force fields generation can significantly profit from leveraging
the framework of geometric quantum machine learning, and that chemical systems
represent, in fact, an interesting and rich playground for the development and
application of advanced quantum machine learning tools.
- Abstract(参考訳): 機械学習技術は、原子論シミュレーションのための効率的で正確な力場を計算するのに欠かせないツールである。
このアプローチは最近、量子コンピューティングの手法を取り入れるために拡張され、潜在的なエネルギー表面や原子力を予測するために変分量子学習モデルが用いられるようになった。
しかしながら、そのようなモデルのトレーニング容易性とスケーラビリティは、理論的および実用的障壁の両方のため、依然として制限されている。
近年の幾何学的古典的および量子的機械学習の発展に触発されて、我々は、データにインスパイアされた先行として、物理的に関連する幅広い対称性を明示的に組み込む量子ニューラルネットワークを設計した。
我々の不変量子学習モデルは、複雑性が増大する個々の分子において、より一般的なものよりも優れています。
さらに,複数の成分を持つシステムの最小例として水二量体について検討し,提案手法の汎用性を示し,より大きなシミュレーションへの道を開く。
以上の結果から,分子力場の生成は幾何学的量子機械学習の枠組みを活用し,化学系は高度な量子機械学習ツールの開発と応用のための興味深く豊かな場であることが示唆された。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
量子ニューラルネットワークは、分子系のポテンシャルエネルギー表面と力場を学習するために用いられる。
この特定の教師付き学習ルーチンは、古典的コンピュータ上で実行される単純な線形回帰からなるリソース効率のトレーニングを可能にする。
我々は、任意の次元の分子を研究するために使用でき、NISQデバイスで即時使用するために最適化された設定をテストした。
他の教師付き学習ルーチンと比較して、提案されたセットアップは最小限の量子リソースを必要とするため、量子プラットフォーム上で直接実装することが可能である。
論文 参考訳(メタデータ) (2024-06-20T18:00:01Z) - Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning [1.9144534010016192]
量子ハードウェア上での分子動力学シミュレーションのための新しい経路を提案する。
移動学習と機械学習によるポテンシャルエネルギー表面構築技術を組み合わせることにより,新しい経路が提案される。
このアプローチは、機械学習モデルをトレーニングして、Behler-Parrinelloニューラルネットワークを用いて分子のポテンシャルエネルギーを予測することによって実証される。
論文 参考訳(メタデータ) (2024-06-12T18:00:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Extending the reach of quantum computing for materials science with
machine learning potentials [0.3352108528371308]
本稿では,機械学習のポテンシャルを用いて,量子計算手法の範囲を大規模シミュレーションに拡張する戦略を提案する。
各種ノイズ源を選択する機械学習能力の訓練性について検討する。
我々は、水素分子のための実際のIBM Quantumプロセッサ上で計算されたデータから、最初の機械学習ポテンシャルを構築する。
論文 参考訳(メタデータ) (2022-03-14T15:59:30Z) - Quantum neural networks force fields generation [0.0]
量子ニューラルネットワークアーキテクチャを設計し、複雑性が増大するさまざまな分子に適用することに成功しています。
量子モデルは古典的なモデルに対してより大きな有効次元を示し、競争性能に達することができる。
論文 参考訳(メタデータ) (2022-03-09T12:10:09Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。