論文の概要: Quantum Extreme Learning of molecular potential energy surfaces and force fields
- arxiv url: http://arxiv.org/abs/2406.14607v1
- Date: Thu, 20 Jun 2024 18:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 18:23:10.744754
- Title: Quantum Extreme Learning of molecular potential energy surfaces and force fields
- Title(参考訳): 分子ポテンシャルエネルギー表面の量子エクストリーム学習と力場
- Authors: Gabriele Lo Monaco, Marco Bertini, Salvatore Lorenzo, G. Massimo Palma,
- Abstract要約: 量子ニューラルネットワークは、分子系のポテンシャルエネルギー表面と力場を学習するために用いられる。
この特定の教師付き学習ルーチンは、古典的コンピュータ上で実行される単純な線形回帰からなるリソース効率のトレーニングを可能にする。
我々は、任意の次元の分子を研究するために使用でき、NISQデバイスで即時使用するために最適化された設定をテストした。
他の教師付き学習ルーチンと比較して、提案されたセットアップは最小限の量子リソースを必要とするため、量子プラットフォーム上で直接実装することが可能である。
- 参考スコア(独自算出の注目度): 5.13730975608994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning algorithms are expected to play a pivotal role in quantum chemistry simulations in the immediate future. One such key application is the training of a quantum neural network to learn the potential energy surface and force field of molecular systems. We address this task by using the quantum extreme learning machine paradigm. This particular supervised learning routine allows for resource-efficient training, consisting of a simple linear regression performed on a classical computer. We have tested a setup that can be used to study molecules of any dimension and is optimized for immediate use on NISQ devices with a limited number of native gates. We have applied this setup to three case studies: lithium hydride, water, and formamide, carrying out both noiseless simulations and actual implementation on IBM quantum hardware. Compared to other supervised learning routines, the proposed setup requires minimal quantum resources, making it feasible for direct implementation on quantum platforms, while still achieving a high level of predictive accuracy compared to simulations. Our encouraging results pave the way towards the future application to more complex molecules, being the proposed setup scalable.
- Abstract(参考訳): 量子機械学習アルゴリズムは、近い将来、量子化学シミュレーションにおいて重要な役割を果たすことが期待されている。
そのような応用の1つは、分子系のポテンシャルエネルギー表面と力場を学ぶための量子ニューラルネットワークのトレーニングである。
量子極端学習マシンのパラダイムを用いてこの問題に対処する。
この特定の教師付き学習ルーチンは、古典的コンピュータ上で実行される単純な線形回帰からなるリソース効率のトレーニングを可能にする。
我々は、任意の次元の分子を研究するために使用可能なセットアップをテストし、ネイティブゲート数に制限のあるNISQデバイスで即時使用できるように最適化した。
我々はこの設定を水素化リチウム、水、ホルムアミドの3つのケーススタディに適用し、ノイズレスシミュレーションと実際のIBM量子ハードウェアの実装を行った。
他の教師付き学習ルーチンと比較して、提案されたセットアップは最小限の量子リソースを必要とし、シミュレーションよりも高いレベルの予測精度を達成しつつ、量子プラットフォーム上で直接実装することが可能である。
私たちの奨励的な結果は、提案されたセットアップがスケーラブルである、より複雑な分子への将来の応用への道を開くものです。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning [1.9144534010016192]
量子ハードウェア上での分子動力学シミュレーションのための新しい経路を提案する。
移動学習と機械学習によるポテンシャルエネルギー表面構築技術を組み合わせることにより,新しい経路が提案される。
このアプローチは、機械学習モデルをトレーニングして、Behler-Parrinelloニューラルネットワークを用いて分子のポテンシャルエネルギーを予測することによって実証される。
論文 参考訳(メタデータ) (2024-06-12T18:00:09Z) - Physics-informed active learning for accelerating quantum chemical simulations [10.56535364437456]
本稿では,量子化学シミュレーションにおけるロバストなデータ効率ポテンシャル構築のためのエンドツーエンドALを提案する。
本プロトコルは,物理インフォームドによるトレーニングポイントのサンプリング,初期データの自動選択,不確実性定量化,収束モニタリングに基づく。
これらの調査は、高性能コンピューティングクラスタ上での純粋な量子化学計算ではなく、数週間を要した。
論文 参考訳(メタデータ) (2024-04-18T00:17:01Z) - Symmetry-invariant quantum machine learning force fields [0.0]
我々は、データに着想を得た、広範囲な物理関連対称性の集合を明示的に組み込んだ量子ニューラルネットワークを設計する。
この結果から,分子力場生成は量子機械学習の枠組みを生かして著しく利益を得る可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-19T16:15:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Extending the reach of quantum computing for materials science with
machine learning potentials [0.3352108528371308]
本稿では,機械学習のポテンシャルを用いて,量子計算手法の範囲を大規模シミュレーションに拡張する戦略を提案する。
各種ノイズ源を選択する機械学習能力の訓練性について検討する。
我々は、水素分子のための実際のIBM Quantumプロセッサ上で計算されたデータから、最初の機械学習ポテンシャルを構築する。
論文 参考訳(メタデータ) (2022-03-14T15:59:30Z) - Quantum neural networks force fields generation [0.0]
量子ニューラルネットワークアーキテクチャを設計し、複雑性が増大するさまざまな分子に適用することに成功しています。
量子モデルは古典的なモデルに対してより大きな有効次元を示し、競争性能に達することができる。
論文 参考訳(メタデータ) (2022-03-09T12:10:09Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。