Physics-Enhanced TinyML for Real-Time Detection of Ground Magnetic
Anomalies
- URL: http://arxiv.org/abs/2311.11452v1
- Date: Sun, 19 Nov 2023 23:20:16 GMT
- Title: Physics-Enhanced TinyML for Real-Time Detection of Ground Magnetic
Anomalies
- Authors: Talha Siddique and MD Shaad Mahmud
- Abstract summary: Space weather phenomena like geomagnetic disturbances (GMDs) pose significant risks to critical technological infrastructure.
This paper develops a physics-guided TinyML framework to address the above challenges.
It integrates physics-based regularization at the stages of model training and compression, thereby augmenting the reliability of predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Space weather phenomena like geomagnetic disturbances (GMDs) and
geomagnetically induced currents (GICs) pose significant risks to critical
technological infrastructure. While traditional predictive models, grounded in
simulation, hold theoretical robustness, they grapple with challenges, notably
the assimilation of imprecise data and extensive computational complexities. In
recent years, Tiny Machine Learning (TinyML) has been adopted to develop
Machine Learning (ML)-enabled magnetometer systems for predicting real-time
terrestrial magnetic perturbations as a proxy measure for GIC. While TinyML
offers efficient, real-time data processing, its intrinsic limitations prevent
the utilization of robust methods with high computational needs. This paper
developed a physics-guided TinyML framework to address the above challenges.
This framework integrates physics-based regularization at the stages of model
training and compression, thereby augmenting the reliability of predictions.
The developed pruning scheme within the framework harnesses the inherent
physical characteristics of the domain, striking a balance between model size
and robustness. The study presents empirical results, drawing a comprehensive
comparison between the accuracy and reliability of the developed framework and
its traditional counterpart. Such a comparative analysis underscores the
prospective applicability of the developed framework in conceptualizing robust,
ML-enabled magnetometer systems for real-time space weather forecasting.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - A physics-constrained machine learning method for mapping gapless land
surface temperature [6.735896406986559]
In this paper, a physics- ML model is proposed to generate gapless LST with physical meanings and high accuracy.
The light-boosting machine (LGBM) model, which uses only remote sensing data as gradient input serves as the pure ML model.
Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST.
arXiv Detail & Related papers (2023-07-03T01:44:48Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - Using Conservation Laws to Infer Deep Learning Model Accuracy of
Richtmyer-meshkov Instabilities [0.0]
Richtmyer-Meshkov Instability (RMI) is a complicated phenomenon that occurs when a shockwave passes through a perturbed interface.
Deep learning was used to learn the temporal mapping of initial geometric perturbations to the full-field hydrodynamic solutions of density and velocity.
Predictions from the deep learning model appear to accurately capture temporal RMI formations.
arXiv Detail & Related papers (2022-07-19T02:20:47Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
Fourier Neural Operator (FNO) was the first to simulate turbulent flow with zero-shot super-resolution.
We generate adversarial examples for FNO based on norm-bounded data input perturbations.
Our results show that the model's robustness degrades rapidly with increasing perturbation levels.
arXiv Detail & Related papers (2022-04-08T19:19:42Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
We propose a generative framework for learning an effective, lower-dimensional, coarse-grained dynamical model.
We demonstrate its efficacy and accuracy in multiscale physical systems of particle dynamics.
arXiv Detail & Related papers (2021-01-14T19:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.