Computational, Data-Driven, and Physics-Informed Machine Learning Approaches for Microstructure Modeling in Metal Additive Manufacturing
- URL: http://arxiv.org/abs/2505.01424v1
- Date: Fri, 02 May 2025 17:59:54 GMT
- Title: Computational, Data-Driven, and Physics-Informed Machine Learning Approaches for Microstructure Modeling in Metal Additive Manufacturing
- Authors: D. Patel, R. Sharma, Y. B. Guo,
- Abstract summary: Metal additive manufacturing enables unprecedented design freedom and the production of customized, complex components.<n>The rapid melting and solidification dynamics inherent to metal AM processes generate heterogeneous, non-equilibrium microstructures.<n>Predicting microstructure and its evolution across spatial and temporal scales remains a central challenge for process optimization and defect mitigation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metal additive manufacturing enables unprecedented design freedom and the production of customized, complex components. However, the rapid melting and solidification dynamics inherent to metal AM processes generate heterogeneous, non-equilibrium microstructures that significantly impact mechanical properties and subsequent functionality. Predicting microstructure and its evolution across spatial and temporal scales remains a central challenge for process optimization and defect mitigation. While conventional experimental techniques and physics-based simulations provide a physical foundation and valuable insights, they face critical limitations. In contrast, data-driven machine learning offers an alternative prediction approach and powerful pattern recognition but often operate as black-box, lacking generalizability and physical consistency. To overcome these limitations, physics-informed machine learning, including physics-informed neural networks, has emerged as a promising paradigm by embedding governing physical laws into neural network architectures, thereby enhancing accuracy, transparency, data efficiency, and extrapolation capabilities. This work presents a comprehensive evaluation of modeling strategies for microstructure prediction in metal AM. The strengths and limitations of experimental, computational, and data-driven methods are analyzed in depth, and highlight recent advances in hybrid PIML frameworks that integrate physical knowledge with ML. Key challenges, such as data scarcity, multi-scale coupling, and uncertainty quantification, are discussed alongside future directions. Ultimately, this assessment underscores the importance of PIML-based hybrid approaches in enabling predictive, scalable, and physically consistent microstructure modeling for site-specific, microstructure-aware process control and the reliable production of high-performance AM components.
Related papers
- evoxels: A differentiable physics framework for voxel-based microstructure simulations [41.94295877935867]
Differentiable physics framework evoxels is based on a fully Pythonic, unified voxel-based approach that integrates segmented 3D microscopy data, physical simulations, inverse modeling, and machine learning.
arXiv Detail & Related papers (2025-07-29T12:29:15Z) - MOFSimBench: Evaluating Universal Machine Learning Interatomic Potentials In Metal--Organic Framework Molecular Modeling [0.19506923346234722]
Universal machine learning interatomic potentials (uMLIPs) have emerged as powerful tools for accelerating atomistic simulations.<n>We introduce MOFSimBench, a benchmark to evaluate uMLIPs on key materials modeling tasks for nanoporous materials.<n>We find that top-performing uMLIPs consistently outperform classical force fields and fine-tuned machine learning potentials across all tasks.
arXiv Detail & Related papers (2025-07-16T00:00:55Z) - Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization [80.82828320306464]
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications.<n>PDD is an iterative, five-step process that consists of: i.e. deriving device behavior from design parameters, ii. simulating device performance, iv. fabricating the optimal device, and v. measuring device performance.<n>PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes.<n>In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD
arXiv Detail & Related papers (2025-06-24T23:32:54Z) - Exploring Efficient Quantification of Modeling Uncertainties with Differentiable Physics-Informed Machine Learning Architectures [2.4117201298131232]
Quantifying and propagating modeling uncertainties is crucial for reliability analysis, robust optimization, and other model-based algorithmic processes in engineering design and control.<n> physics-informed machine learning (PIML) methods have emerged in recent years as a new alternative to traditional computational modeling and surrogate modeling methods.
arXiv Detail & Related papers (2025-06-23T02:32:20Z) - Spatiotemporal Field Generation Based on Hybrid Mamba-Transformer with Physics-informed Fine-tuning [46.67399627400437]
This research confronts the challenge of substantial physical equation discrepancies in the generation of physical fields through trained models.<n>A physical field generation model, named HMT-PF, is developed based on the hybrid Mamba-Transformer architecture.
arXiv Detail & Related papers (2025-05-16T14:40:56Z) - Machine learning surrogate models of many-body dispersion interactions in polymer melts [40.83978401377059]
We introduce a machine learning surrogate model specifically designed to predict MBD forces in polymer melts.<n>Our model is based on a trimmed SchNet architecture that selectively retains the most relevant atomic connections.<n>Characterized by high computational efficiency, our surrogate model enables practical incorporation of MBD effects into large-scale molecular simulations.
arXiv Detail & Related papers (2025-03-19T12:15:35Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - An Augmented Surprise-guided Sequential Learning Framework for
Predicting the Melt Pool Geometry [4.021352247826289]
Metal Additive Manufacturing (MAM) has reshaped the manufacturing industry, offering benefits like intricate design, minimal waste, rapid prototyping, material versatility, and customized solutions.
A crucial aspect for MAM's success is understanding the relationship between process parameters and melt pool characteristics.
Traditional machine learning (ML) methods, while effective, depend on large datasets to capture complex relationships.
Our study introduces a novel surprise-guided sequential learning framework, SurpriseAF-BO, signaling a significant shift in MAM.
arXiv Detail & Related papers (2024-01-10T23:05:23Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
Metal additive manufacturing (MAM) has experienced significant developments and gained much attention.
Predicting the impact of processing parameters on the characteristics of an MAM printed clad is challenging due to the complex nature of MAM processes.
Machine learning (ML) techniques can help connect the physics underlying the process and processing parameters to the clad characteristics.
arXiv Detail & Related papers (2023-07-04T18:32:41Z) - Computational Discovery of Microstructured Composites with Optimal
Stiffness-Toughness Trade-Offs [39.393383789980895]
Conflict between stiffness and toughness is a fundamental problem in engineering materials design.
We introduce a generalizable pipeline that integrates physical experiments, numerical simulations, and artificial neural networks to address both challenges.
Our method provides a blueprint for computational design in various research areas beyond solid mechanics.
arXiv Detail & Related papers (2023-02-01T00:50:16Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
This chapter demonstrates advanced data-driven methods and outlines the capability that must be developed/added for the multi-scale modeling of advanced composite materials.
It proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators.
arXiv Detail & Related papers (2022-10-13T16:40:11Z) - PARC: Physics-Aware Recurrent Convolutional Neural Networks to
Assimilate Meso-scale Reactive Mechanics of Energetic Materials [0.0]
We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of shock-initiated energetic materials (EM)
We demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.
arXiv Detail & Related papers (2022-04-04T14:29:35Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.