論文の概要: MGCT: Mutual-Guided Cross-Modality Transformer for Survival Outcome
Prediction using Integrative Histopathology-Genomic Features
- arxiv url: http://arxiv.org/abs/2311.11659v1
- Date: Mon, 20 Nov 2023 10:49:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 19:18:15.997287
- Title: MGCT: Mutual-Guided Cross-Modality Transformer for Survival Outcome
Prediction using Integrative Histopathology-Genomic Features
- Title(参考訳): mgct : 統合組織病理・遺伝学的特徴を用いた生存予後予測のための相互誘導型クロスモダリティトランスフォーマタ
- Authors: Mingxin Liu, Yunzan Liu, Hui Cui, Chunquan Li, Jiquan Ma
- Abstract要約: Mutual-Guided Cross-Modality Transformer (MGCT) は、注意に基づくマルチモーダル学習フレームワークである。
腫瘍微小環境における遺伝子型-フェノタイプ相互作用をモデル化するために,組織学的特徴とゲノム的特徴を組み合わせたMGCTを提案する。
- 参考スコア(独自算出の注目度): 2.3942863352287787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapidly emerging field of deep learning-based computational pathology has
shown promising results in utilizing whole slide images (WSIs) to objectively
prognosticate cancer patients. However, most prognostic methods are currently
limited to either histopathology or genomics alone, which inevitably reduces
their potential to accurately predict patient prognosis. Whereas integrating
WSIs and genomic features presents three main challenges: (1) the enormous
heterogeneity of gigapixel WSIs which can reach sizes as large as
150,000x150,000 pixels; (2) the absence of a spatially corresponding
relationship between histopathology images and genomic molecular data; and (3)
the existing early, late, and intermediate multimodal feature fusion strategies
struggle to capture the explicit interactions between WSIs and genomics. To
ameliorate these issues, we propose the Mutual-Guided Cross-Modality
Transformer (MGCT), a weakly-supervised, attention-based multimodal learning
framework that can combine histology features and genomic features to model the
genotype-phenotype interactions within the tumor microenvironment. To validate
the effectiveness of MGCT, we conduct experiments using nearly 3,600 gigapixel
WSIs across five different cancer types sourced from The Cancer Genome Atlas
(TCGA). Extensive experimental results consistently emphasize that MGCT
outperforms the state-of-the-art (SOTA) methods.
- Abstract(参考訳): 深層学習に基づく計算病理学の急速に発展する分野は、がん患者を客観的に予測するために全スライド画像(WSI)を利用するという有望な結果を示している。
しかしながら、ほとんどの予後診断法は、現在、病理学またはゲノム学のみに限られており、患者の予後を正確に予測する可能性を必然的に減少させる。
一方、WSIとゲノムの特徴の統合は、(1)15万x150,000ピクセルの大きさまで到達できる巨大なギガピクセルWSIの異質性、(2)病理像とゲノム分子データの空間的関連性の欠如、(3)既存の早期・後期・中期のマルチモーダル特徴融合戦略は、WSIとゲノム間の明示的な相互作用を捉えるのに苦労する。
そこで本研究では,組織学的特徴とゲノム的特徴を組み合わせることで,腫瘍微小環境における遺伝子型・表現型相互作用をモデル化する,相互誘導型クロスモダリティトランスフォーマ(mgct)を提案する。
MGCTの有効性を検証するため,癌ゲノムアトラス(TCGA)由来の5種類の癌に対して,約3600ギガピクセルのWSIを用いて実験を行った。
実験結果はMGCTが最先端(SOTA)法より優れていることを一貫して強調している。
関連論文リスト
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Multimodal Prototyping for cancer survival prediction [45.61869793509184]
ギガピクセルヒストロジー全体スライディング画像(WSI)と転写学的プロファイルを組み合わせたマルチモーダルサバイバル法は,患者の予後と成層化に特に有望である。
現在のアプローチでは、WSIを小さなパッチ(>10,000パッチ)にトークン化し、トランスクリプトミクスを遺伝子グループに分割し、結果を予測するためにTransformerを使用して統合する。
このプロセスは多くのトークンを生成し、これは注意を計算するための高いメモリ要求をもたらし、ポストホック解釈可能性分析を複雑にする。
我々のフレームワークは、新しい解釈可能性解析を解き放ちながら、はるかに少ない計算で最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-06-28T20:37:01Z) - Multimodal Cross-Task Interaction for Survival Analysis in Whole Slide Pathological Images [10.996711454572331]
病理像とゲノムプロファイルを利用した生存予測は、癌解析と予後においてますます重要である。
既存のマルチモーダル手法は、補完的な情報を統合するためのアライメント戦略に依存していることが多い。
本稿では,サブタイプ分類と生存分析タスクの因果関係を明らかにするために,MCTI(Multimodal Cross-Task Interaction)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-25T02:18:35Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images [7.5123289730388825]
ゲノムインフォームドハイパーアテンションネットワーク(G-HANet)は、トレーニング中にヒストリーゲノム知識を効果的に蒸留することができる。
ネットワークは、クロスモーダル・アソシエーション・ブランチ(CAB)とハイパーアテンション・サバイバル・ブランチ(HSB)から構成される。
論文 参考訳(メタデータ) (2024-03-15T06:20:09Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
大腸癌生存予測に病理学とゲノム学的知見を統合したマルチモーダルトランスフォーマー(PathOmics)を提案する。
ギガピクセル全スライド画像における組織ミクロ環境間の内在的相互作用を捉えるための教師なし事前訓練を強調した。
我々は,TCGA大腸癌と直腸癌コホートの両方に対するアプローチを評価し,提案手法は競争力があり,最先端の研究より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-22T00:59:26Z) - Multimodal Optimal Transport-based Co-Attention Transformer with Global
Structure Consistency for Survival Prediction [5.445390550440809]
生存予測(Survival prediction)は、死亡リスクの予測を目的とした複雑な順序回帰タスクである。
病理画像の大きさが大きいため、スライド画像全体(WSI)を効果的に表現することは困難である。
組織学における腫瘍微小環境(TME)内の相互作用は生存分析に不可欠である。
論文 参考訳(メタデータ) (2023-06-14T08:01:24Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。