論文の概要: Assessing the Threat Level of Software Supply Chains with the Log Model
- arxiv url: http://arxiv.org/abs/2311.11725v1
- Date: Mon, 20 Nov 2023 12:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 15:51:52.179063
- Title: Assessing the Threat Level of Software Supply Chains with the Log Model
- Title(参考訳): ログモデルによるソフトウェアサプライチェーンの脅威レベルの評価
- Authors: Luıs Soeiro, Thomas Robert, Stefano Zacchiroli,
- Abstract要約: 全ソフトウェアシステムにおけるフリーおよびオープンソースソフトウェア(FOSS)コンポーネントの使用は90%以上と見積もられている。
本研究は、ログモデルを用いてFOSSサプライチェーンの脅威レベルを評価する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 4.1920378271058425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of free and open source software (FOSS) components in all software systems is estimated to be above 90%. With such high usage and because of the heterogeneity of FOSS tools, repositories, developers and ecosystem, the level of complexity of managing software development has also increased. This has amplified both the attack surface for malicious actors and the difficulty of making sure that the software products are free from threats. The rise of security incidents involving high profile attacks is evidence that there is still much to be done to safeguard software products and the FOSS supply chain. Software Composition Analysis (SCA) tools and the study of attack trees help with improving security. However, they still lack the ability to comprehensively address how interactions within the software supply chain may impact security. This work presents a novel approach of assessing threat levels in FOSS supply chains with the log model. This model provides information capture and threat propagation analysis that not only account for security risks that may be caused by attacks and the usage of vulnerable software, but also how they interact with the other elements to affect the threat level for any element in the model.
- Abstract(参考訳): 全ソフトウェアシステムにおけるフリーおよびオープンソースソフトウェア(FOSS)コンポーネントの使用は90%以上と見積もられている。
このような高い使用率と、FOSSツール、リポジトリ、開発者、エコシステムの不均一性により、ソフトウェア開発管理の複雑さのレベルも高まっている。
これにより、悪意のあるアクターに対する攻撃面と、ソフトウェア製品が脅威から解放されることの難しさの両方が増幅された。
高いプロファイル攻撃を含むセキュリティインシデントの増加は、ソフトウェア製品とFOSSサプライチェーンを保護するためにまだやるべきことがまだたくさんあることの証拠である。
ソフトウェア構成分析(SCA)ツールと攻撃木の研究は、セキュリティの改善に役立つ。
しかし、ソフトウェアサプライチェーン内のインタラクションがセキュリティにどのように影響するかを包括的に解決する能力がない。
本研究は、ログモデルを用いてFOSSサプライチェーンの脅威レベルを評価する新しいアプローチを提案する。
このモデルは、攻撃や脆弱なソフトウェアの使用によって引き起こされる可能性のあるセキュリティリスクだけでなく、他の要素とどのように相互作用してモデルのあらゆる要素の脅威レベルに影響を与えるか、情報キャプチャと脅威伝播の分析を提供する。
関連論文リスト
- The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - An Industry Interview Study of Software Signing for Supply Chain Security [5.433194344896805]
多くのサイバーセキュリティフレームワーク、標準、規制は、ソフトウェア署名の使用を推奨している。
最近の調査によると、ソフトウェアシグネチャの採用率と品質は低い。
13の組織にまたがる18の業界実践者に対してインタビューを行った。
論文 参考訳(メタデータ) (2024-06-12T13:30:53Z) - SoK: A Defense-Oriented Evaluation of Software Supply Chain Security [3.165193382160046]
ソフトウェアサプライチェーンのセキュリティ研究と開発の次の段階は、防衛指向のアプローチから大きな恩恵を受けるだろう、と私たちは主張する。
本稿では,ソフトウェアサプライチェーンの基本的な要素とその因果関係を表現するフレームワークであるAStRAモデルを紹介する。
論文 参考訳(メタデータ) (2024-05-23T18:53:48Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
社会的利益にもかかわらず、最近の研究はグラフMLモデルの普及に伴う重要な安全性上の懸念を浮き彫りにしている。
安全性を重視した設計が欠如しているため、これらのモデルは信頼性の低い予測を導き、一般化性の低下を示し、データの機密性を侵害することができる。
金融詐欺検出のような高額なシナリオでは、これらの脆弱性は個人と社会の両方を全般的に危険に晒す可能性がある。
論文 参考訳(メタデータ) (2024-05-17T18:11:11Z) - DevPhish: Exploring Social Engineering in Software Supply Chain Attacks on Developers [0.3754193239793766]
敵はソフトウェア開発者に特化した社会工学(SocE)技術を利用する。
本稿では、ソフトウェア技術者(SWE)を騙して悪意あるソフトウェアを届けるために、敵が採用している既存のSocE戦術を包括的に探求することを目的とする。
論文 参考訳(メタデータ) (2024-02-28T15:24:43Z) - A Landscape Study of Open Source and Proprietary Tools for Software Bill
of Materials (SBOM) [3.1190983209295076]
Software Bill of Materials (SBOM) は、アプリケーションで使用されるすべてのサードパーティのコンポーネントと依存関係を在庫するリポジトリである。
最近のサプライチェーンの侵害は、ソフトウェアのセキュリティと脆弱性のリスクを高める緊急の必要性を浮き彫りにしている。
本研究では,SBOMに関連するオープンソースおよびプロプライエタリツールの現在の状況を評価するための実証分析を行う。
論文 参考訳(メタデータ) (2024-02-17T00:36:20Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Software supply chain: review of attacks, risk assessment strategies and
security controls [0.13812010983144798]
ソフトウェア製品は、ソフトウェアサプライチェーンを配布ベクタとして使用することによって組織を標的とするサイバー攻撃の源泉である。
我々は、分析された攻撃の最新の傾向を提供することで、最も一般的なソフトウェアサプライチェーン攻撃を分析します。
本研究では、分析されたサイバー攻撃やリスクを現実のセキュリティインシデントやアタックと結びつけて軽減するユニークなセキュリティ制御を導入する。
論文 参考訳(メタデータ) (2023-05-23T15:25:39Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。