論文の概要: Integrating Artificial Open Generative Artificial Intelligence into Software Supply Chain Security
- arxiv url: http://arxiv.org/abs/2412.19088v1
- Date: Thu, 26 Dec 2024 07:03:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:24:14.498869
- Title: Integrating Artificial Open Generative Artificial Intelligence into Software Supply Chain Security
- Title(参考訳): 人工知能をソフトウェアサプライチェーンのセキュリティに統合する
- Authors: Vasileios Alevizos, George A Papakostas, Akebu Simasiku, Dimitra Malliarou, Antonis Messinis, Sabrina Edralin, Clark Xu, Zongliang Yue,
- Abstract要約: 我々は,有望なオープン言語モデル(LLM)の実験を,ソースコード言語エラーと非推奨コードという,2つの主要なソフトウェアセキュリティ課題に分けて実施する。
以上の結果から,LSMは予期せぬ結果を示すが,特にメモリの複雑化や,新しいデータパターンや不慣れなデータパターンの管理において,大きな制約が生じることが示唆された。
これらの課題にもかかわらず、LLMの積極的な適用は、広範なセキュリティデータベースや継続的更新と相まって、新たな脅威に対してソフトウェアサプライチェーンプロセスを強化できる可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While new technologies emerge, human errors always looming. Software supply chain is increasingly complex and intertwined, the security of a service has become paramount to ensuring the integrity of products, safeguarding data privacy, and maintaining operational continuity. In this work, we conducted experiments on the promising open Large Language Models (LLMs) into two main software security challenges: source code language errors and deprecated code, with a focus on their potential to replace conventional static and dynamic security scanners that rely on predefined rules and patterns. Our findings suggest that while LLMs present some unexpected results, they also encounter significant limitations, particularly in memory complexity and the management of new and unfamiliar data patterns. Despite these challenges, the proactive application of LLMs, coupled with extensive security databases and continuous updates, holds the potential to fortify Software Supply Chain (SSC) processes against emerging threats.
- Abstract(参考訳): 新しい技術が出現する一方で、人間のエラーは常に悪化する。
ソフトウェアのサプライチェーンはますます複雑で絡み合っており、サービスのセキュリティは、製品の完全性を確保し、データのプライバシを保護し、運用継続性を維持するために最重要になっている。
本研究では,ソースコード言語エラーと非推奨コードという,有望なオープンなLarge Language Model (LLM) に関する2つの主要なソフトウェアセキュリティ課題に対して,事前定義されたルールやパターンに依存する従来型の静的および動的セキュリティスキャナを置き換える可能性に着目した実験を行った。
以上の結果から,LSMは予期せぬ結果を示すが,特にメモリの複雑化や,新しいデータパターンや不慣れなデータパターンの管理において,大きな制約が生じることが示唆された。
これらの課題にもかかわらず、LLMの積極的な適用は、広範なセキュリティデータベースと継続的更新とともに、新たな脅威に対するソフトウェアサプライチェーン(SSC)プロセスの強化の可能性を秘めている。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) は、現代のサイバーセキュリティに対する変革的なアプローチである。
ZTAは、ユーザ、デバイス、システムがデフォルトで信頼できないことを前提として、セキュリティパラダイムをシフトする。
本稿では、アイデンティティとアクセス管理(IAM)、マイクロセグメンテーション、継続的監視、行動分析など、ZTAの重要なコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-10-23T21:53:16Z) - PILLAR: an AI-Powered Privacy Threat Modeling Tool [2.2366638308792735]
PILLARは、Large Language ModelsとLINDDUNフレームワークを統合して、プライバシ脅威モデリングの合理化と強化を行う新しいツールである。
PILLARは、DFDの生成、脅威の分類、リスクの優先順位付けなど、LINDDUNプロセスの重要な部分を自動化する。
論文 参考訳(メタデータ) (2024-10-11T12:13:03Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Secure Software Development: Issues and Challenges [0.0]
生活のデジタル化は、人間の問題を解決し、生活の質を向上させることを証明する。
ハッカーたちは、無実の人々のデータを盗み、ID詐欺や詐欺など、そのほかの目的のために利用しようとしている。
セキュアなシステムソフトウェアの目的は、システムライフサイクルを実行することによって、そのようなエクスプロイトが決して起こらないようにすることです。
論文 参考訳(メタデータ) (2023-11-18T09:44:48Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
堅牢なサイバーセキュリティ防衛の統合は、ソフトウェア開発のあらゆる段階において不可欠になっている。
ソフトウェア要件プロセスにおけるこれらの初期段階の脆弱性の検出にトピックモデリングと機械学習を活用する試みが実施されている。
論文 参考訳(メタデータ) (2023-11-01T17:46:07Z) - Security for Machine Learning-based Software Systems: a survey of
threats, practices and challenges [0.76146285961466]
機械学習ベースのモダンソフトウェアシステム(MLBSS)を安全に開発する方法は、依然として大きな課題である。
潜伏中の脆弱性と、外部のユーザーや攻撃者に暴露されるプライバシー問題は、ほとんど無視され、特定が難しい。
機械学習ベースのソフトウェアシステムのセキュリティは、固有のシステム欠陥や外敵攻撃から生じる可能性があると考えている。
論文 参考訳(メタデータ) (2022-01-12T23:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。