A Large-Scale Car Parts (LSCP) Dataset for Lightweight Fine-Grained
Detection
- URL: http://arxiv.org/abs/2311.11754v1
- Date: Mon, 20 Nov 2023 13:30:42 GMT
- Title: A Large-Scale Car Parts (LSCP) Dataset for Lightweight Fine-Grained
Detection
- Authors: Wang Jie, Zhong Yilin, Cao Qianqian
- Abstract summary: This paper presents a large-scale and fine-grained automotive dataset consisting of 84,162 images for detecting 12 different types of car parts.
To alleviate the burden of manual annotation, we propose a novel semi-supervised auto-labeling method.
We also study the limitations of the Grounding DINO approach for zero-shot labeling.
- Score: 0.23020018305241333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automotive related datasets have previously been used for training autonomous
driving systems or vehicle classification tasks. However, there is a lack of
datasets in the field of automotive AI for car parts detection, and most
available datasets are limited in size and scope, struggling to cover diverse
scenarios. To address this gap, this paper presents a large-scale and
fine-grained automotive dataset consisting of 84,162 images for detecting 12
different types of car parts. This dataset was collected from natural cameras
and online websites which covers various car brands, scenarios, and shooting
angles. To alleviate the burden of manual annotation, we propose a novel
semi-supervised auto-labeling method that leverages state-of-the-art
pre-trained detectors. Moreover, we study the limitations of the Grounding DINO
approach for zero-shot labeling. Finally, we evaluate the effectiveness of our
proposed dataset through fine-grained car parts detection by training several
lightweight YOLO-series detectors.
Related papers
- TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
Effective traffic light detection is a critical component of the perception stack in autonomous vehicles.
This work introduces a novel deep-learning detection system while addressing the challenges of previous work.
We propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation.
arXiv Detail & Related papers (2024-09-11T14:12:44Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
We propose SKoPe3D, a unique synthetic vehicle keypoint dataset from a roadside perspective.
SKoPe3D contains over 150k vehicle instances and 4.9 million keypoints.
Our experiments highlight the dataset's applicability and the potential for knowledge transfer between synthetic and real-world data.
arXiv Detail & Related papers (2023-09-04T02:57:30Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Object Detection and Tracking Algorithms for Vehicle Counting: A
Comparative Analysis [3.093890460224435]
Authors deploy several state of the art object detection and tracking algorithms to detect and track different classes of vehicles.
Model combinations are validated and compared against the manually counted ground truths of over 9 hours' traffic video data.
Results demonstrate that the combination of CenterNet and Deep SORT, Detectron2 and Deep SORT, and YOLOv4 and Deep SORT produced the best overall counting percentage for all vehicles.
arXiv Detail & Related papers (2020-07-31T17:49:27Z) - Vehicle Detection of Multi-source Remote Sensing Data Using Active
Fine-tuning Network [26.08837467340853]
The proposed Ms-AFt framework integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection.
The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset.
Extensive experimental results conducted on two open ISPRS benchmark datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection.
arXiv Detail & Related papers (2020-07-16T17:46:46Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
Self-supervised Attention for Vehicle Re-identification (SAVER) is a novel approach to effectively learn vehicle-specific discriminative features.
We show that SAVER improves upon the state-of-the-art on challenging VeRi, VehicleID, Vehicle-1M and VERI-Wild datasets.
arXiv Detail & Related papers (2020-04-14T02:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.