Few-shot Multispectral Segmentation with Representations Generated by
Reinforcement Learning
- URL: http://arxiv.org/abs/2311.11827v1
- Date: Mon, 20 Nov 2023 15:04:16 GMT
- Title: Few-shot Multispectral Segmentation with Representations Generated by
Reinforcement Learning
- Authors: Dilith Jayakody, Thanuja Ambegoda
- Abstract summary: We propose a novel approach for improving few-shot segmentation performance on multispectral images using reinforcement learning.
Our methodology involves training an agent to identify the most informative expressions, updating the dataset using these expressions, and then using the updated dataset to perform segmentation.
We evaluate the effectiveness of our approach on several multispectral datasets and demonstrate its effectiveness in boosting the performance of segmentation algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of multispectral image segmentation (segmentation of images with
numerous channels/bands, each capturing a specific range of wavelengths of
electromagnetic radiation) has been previously explored in contexts with large
amounts of labeled data. However, these models tend not to generalize well to
datasets of smaller size. In this paper, we propose a novel approach for
improving few-shot segmentation performance on multispectral images using
reinforcement learning to generate representations. These representations are
generated in the form of mathematical expressions between channels and are
tailored to the specific class being segmented. Our methodology involves
training an agent to identify the most informative expressions, updating the
dataset using these expressions, and then using the updated dataset to perform
segmentation. Due to the limited length of the expressions, the model receives
useful representations without any added risk of overfitting. We evaluate the
effectiveness of our approach on several multispectral datasets and demonstrate
its effectiveness in boosting the performance of segmentation algorithms.
Related papers
- Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
We propose a novel approach to densely ground visual entities from a long caption.
We leverage a large multimodal model to extract semantic nouns, a class-a segmentation model to generate entity-level segmentation, and a multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask.
arXiv Detail & Related papers (2024-02-04T16:06:05Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - Estimating Appearance Models for Image Segmentation via Tensor
Factorization [0.0]
We propose a new approach to directly estimate appearance models from the image without prior information on the underlying segmentation.
Our method uses local high order color statistics from the image as an input to tensor factorization-based estimator for latent variable models.
This approach is able to estimate models in multiregion images and automatically output the regions proportions without prior user interaction.
arXiv Detail & Related papers (2022-08-16T17:21:00Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
We present a novel semantic segmentation method based on diffusion models.
By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images.
Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, meaningful uncertainty maps.
arXiv Detail & Related papers (2021-12-06T16:28:15Z) - Label-Efficient Semantic Segmentation with Diffusion Models [27.01899943738203]
We demonstrate that diffusion models can also serve as an instrument for semantic segmentation.
In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process.
We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem.
arXiv Detail & Related papers (2021-12-06T15:55:30Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
Image segmentation is a key topic in image processing and computer vision.
There has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models.
arXiv Detail & Related papers (2020-01-15T21:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.