Secure Data Transmission over Insecure Radio Channel in Wireless of Things (WoT) Network
- URL: http://arxiv.org/abs/2311.11864v1
- Date: Mon, 20 Nov 2023 16:00:02 GMT
- Title: Secure Data Transmission over Insecure Radio Channel in Wireless of Things (WoT) Network
- Authors: Prokash Barman, Banani Saha,
- Abstract summary: The Public Key Cryptography (PKC) techniques which use larger keys cannot be fitted in tiny resource constrained Wireless of Things (WoT) devices.
Some Symmetric Key Cryptosystems (SKC) use smaller keys, which can be fitted in the tiny devices.
In large networks where the number of nodes is in the order of 103, the memory constraint does not allow the system to do so.
- Score: 1.864621482724548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Potential capacity of processors is enhancing rapidly which leads to the increase of computational ability of the adversary. As a result, the required key size for conventional encryption techniques is growing everyday for complex unbreakable security communication systems. The Public Key Cryptography (PKC) techniques which use larger keys cannot be fitted in tiny resource constrained Wireless of Things (WoT) devices. Some Symmetric Key Cryptosystems (SKC) use smaller keys, which can be fitted in the tiny devices. But in large networks where the number of nodes is in the order of 103, the memory constraint does not allow the system to do so. The existing secure data communication in insecure medium uses various conventional encryption methods like Public Key Cryptography (PKC) and Symmetric Key Cryptosystems (SKC). Generally, modern encryption methods need huge processing power, memory and time. Also in some cases, Key Pre-distribution System (KPS) is used among different communicating devices. With the growing need for larger key size in the conventional secure communication system, the existing resources in the communicating devices suffer from resource starvation. Hence, the need of a novel mechanism for secure communication is inevitable. But the existing secure communication mechanisms like PKC, SKC or KPS do not ensure elimination of resource starvation issue in tiny devices during communication. In these existing conventional mechanisms, the plain text is generally converted into cipher text with greater size than the plain text at the device level, which leads to resource starvation. At the time of transmission, the cipher text at the device end requires more bandwidth than the plain text which puts bandwidth overhead on the broadcast channel (BC).
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Comparison of Encryption Algorithms for Wearable Devices in IoT Systems [0.0]
The Internet of Things (IoT) expansion has brought a new era of connected devices, including wearable devices like smartwatches and medical monitors.
Wearable devices offer innovative functionalities but also generate and transmit plenty of sensitive data, making their security and privacy the primary concerns.
Various encryption algorithms, each with its own set of advantages and limitations, are available to meet the diverse security and computational needs of wearable IoT devices.
arXiv Detail & Related papers (2024-09-01T19:08:52Z) - Boosting Digital Safeguards: Blending Cryptography and Steganography [0.30783046172997025]
Steganography involves hiding data within another medium, thereby facilitating covert communication by making the message invisible.
This proposed approach takes advantage of the latest advancements in Artificial Intelligence (AI) and Deep Learning (DL), especially through the application of Generative Adversarial Networks (GANs)
The application of GANs enables a smart, secure system that utilizes the inherent sensitivity of neural networks to slight alterations in data.
arXiv Detail & Related papers (2024-04-09T03:36:39Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Quantum Key Distribution for Critical Infrastructures: Towards Cyber
Physical Security for Hydropower and Dams [0.4166512373146748]
Hydropower facilities are often remotely monitored or controlled from a centralized remote-control room.
Communications may use the internet to remote control a facility's control systems, or it may involve sending control commands over a network from a control room to a machine.
The content could be encrypted and decrypted using a public key to protect the communicated information.
In contrast, quantum key distribution (QKD) is not based upon a computational problem, and offers an alternative to conventional public-key cryptography.
arXiv Detail & Related papers (2023-10-19T18:59:23Z) - Grain-128PLE: Generic Physical-Layer Encryption for IoT Networks [6.515605001492591]
Grain-128PLE is a lightweight physical layer encryption scheme that is derived from the Grain-128AEAD v2 stream cipher.
The design of Grain-128PLE maintains the structure of the main building blocks of the original Grain-128AEAD v2 stream cipher.
arXiv Detail & Related papers (2023-09-27T10:48:52Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Measurement-device-independent QSDC protocol using Bell and GHZ states
on quantum simulator [0.0]
Quantum Secure Direct Communication (QSDC) protocol eliminates the necessity of key, encryption and ciphertext transmission.
It is a unique quantum communication scheme where secret information is transmitted directly over a quantum communication channel.
We make use of measurement-device-independent (MDI) protocol in this scheme where all the measurements of quantum states during communication are performed by a third party.
arXiv Detail & Related papers (2020-07-01T07:47:59Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.