Post-Quantum Wireless-based Key Encapsulation Mechanism via CRYSTALS-Kyber for Resource-Constrained Devices
- URL: http://arxiv.org/abs/2504.04511v1
- Date: Sun, 06 Apr 2025 14:57:00 GMT
- Title: Post-Quantum Wireless-based Key Encapsulation Mechanism via CRYSTALS-Kyber for Resource-Constrained Devices
- Authors: M. A. González de la Torre, I. A. Morales Sandoval, Giuseppe Thadeu Freitas de Abreu, L. Hernández Encinas,
- Abstract summary: We consider the problem of adapting a Post-Quantum cryptosystem to be used in resource-constrained devices.<n>We propose leveraging the characteristics of wireless communications channels to minimize the complexity of implementation of a Post-Quantum public key encryption scheme.
- Score: 4.555554576469986
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the problem of adapting a Post-Quantum cryptosystem to be used in resource-constrained devices, such as those typically used in Device-to-Device and Internet of Things systems. In particular, we propose leveraging the characteristics of wireless communications channels to minimize the complexity of implementation of a Post-Quantum public key encryption scheme, without diminishing its security. To that end, we focus on the adaptation of a well-known cryptosystem, namely CRYSTALS-Kyber, so as to enable its direct integration into the lowest layer of the communication stack, the physical layer, defining two new transport schemes for CRYSTALS-Kyber to be used in Device-to-Device communications, both of which are modeled under a wireless channel subject to Additive White Gaussian Noise, using a 4 Quadrature Amplitude Modulation constellation and a BCH-code to communicate CRYSTALSKyber's polynomial coefficients. Simulation results demonstrate the viability of the adapted Kyber algorithm due to its low key error probability, while maintaining the security reductions of the original Kyber by considering the error distribution imposed by the channel on the cipher.
Related papers
- Composable free-space continuous-variable quantum key distribution using discrete modulation [3.864405940022529]
Continuous-variable (CV) quantum key distribution (QKD) allows for quantum secure communication.
We present a CV QKD system using discrete modulation that is especially designed for urban atmospheric channels.
This will allow to expand CV QKD networks beyond the existing fiber backbone.
arXiv Detail & Related papers (2024-10-16T18:02:53Z) - Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
We propose a novel framework of physical layer deception (PLD) to actively counteract wiretapping attempts.<n>PLD combines PLS with deception technologies to actively counteract wiretapping attempts.<n>We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches.
arXiv Detail & Related papers (2024-06-30T16:17:39Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Secure Data Transmission over Insecure Radio Channel in Wireless of Things (WoT) Network [1.864621482724548]
The Public Key Cryptography (PKC) techniques which use larger keys cannot be fitted in tiny resource constrained Wireless of Things (WoT) devices.
Some Symmetric Key Cryptosystems (SKC) use smaller keys, which can be fitted in the tiny devices.
In large networks where the number of nodes is in the order of 103, the memory constraint does not allow the system to do so.
arXiv Detail & Related papers (2023-11-20T16:00:02Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Experimental Demonstration of Discrete Modulation Formats for Continuous
Variable Quantum Key Distribution [0.23090185577016442]
Quantum key distribution (QKD) enables the establishment of secret keys between users connected via a channel vulnerable to eavesdropping.
We experimentally implement a protocol that allows for arbitrary, Gaussian-like, discrete modulations, whose security is based on a theoretical proof.
These modulation formats are compatible with the use of powerful tools of coherent optical telecommunication, allowing our system to reach a performance of tens of megabit per second secret key rates over 25 km.
arXiv Detail & Related papers (2022-07-24T09:45:07Z) - Modulation leakage-free continuous-variable quantum key distribution [1.8268488712787332]
Continuous-variable (CV) QKD based on coherent states is an attractive scheme for secure communication.
This work is a step towards protecting CVQKD systems against practical imperfections of physical devices and operational limitations without performance degradation.
arXiv Detail & Related papers (2022-05-15T10:07:19Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.