Learning Causal Representations from General Environments:
Identifiability and Intrinsic Ambiguity
- URL: http://arxiv.org/abs/2311.12267v2
- Date: Sat, 3 Feb 2024 06:56:00 GMT
- Title: Learning Causal Representations from General Environments:
Identifiability and Intrinsic Ambiguity
- Authors: Jikai Jin and Vasilis Syrgkanis
- Abstract summary: We provide the first identifiability results based on data that stem from general environments.
We show that for linear causal models, while the causal graph can be fully recovered, the latent variables are only identified up to the surrounded-node ambiguity (SNA)
We also propose an algorithm, textttLiNGCReL which provably recovers the ground-truth model up to SNA.
- Score: 27.630223763160515
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We study causal representation learning, the task of recovering high-level
latent variables and their causal relationships in the form of a causal graph
from low-level observed data (such as text and images), assuming access to
observations generated from multiple environments. Prior results on the
identifiability of causal representations typically assume access to
single-node interventions which is rather unrealistic in practice, since the
latent variables are unknown in the first place. In this work, we provide the
first identifiability results based on data that stem from general
environments. We show that for linear causal models, while the causal graph can
be fully recovered, the latent variables are only identified up to the
surrounded-node ambiguity (SNA) \citep{varici2023score}. We provide a
counterpart of our guarantee, showing that SNA is basically unavoidable in our
setting. We also propose an algorithm, \texttt{LiNGCReL} which provably
recovers the ground-truth model up to SNA, and we demonstrate its effectiveness
via numerical experiments. Finally, we consider general non-parametric causal
models and show that the same identification barrier holds when assuming access
to groups of soft single-node interventions.
Related papers
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
Causal discovery from observational data holds great promise.
Existing methods rely on strong assumptions about the underlying causal structure.
We propose a flexible algorithm for causal discovery across linear, nonlinear, and latent variable models.
arXiv Detail & Related papers (2024-07-26T14:09:06Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
We introduce a novel framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network.
We develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones.
Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
arXiv Detail & Related papers (2023-12-18T07:57:39Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - General Identifiability and Achievability for Causal Representation
Learning [33.80247458590611]
The paper establishes identifiability and achievability results using two hard uncoupled interventions per node in the latent causal graph.
For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions.
The analysis, additionally, recovers the identifiability result for two hard coupled interventions, that is when metadata about the pair of environments that have the same node intervened is known.
arXiv Detail & Related papers (2023-10-24T01:47:44Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.