論文の概要: Enabling On-Device Large Language Model Personalization with Self-Supervised Data Selection and Synthesis
- arxiv url: http://arxiv.org/abs/2311.12275v4
- Date: Tue, 16 Apr 2024 21:34:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:20:39.466727
- Title: Enabling On-Device Large Language Model Personalization with Self-Supervised Data Selection and Synthesis
- Title(参考訳): 自己教師付きデータ選択と合成によるオンデバイス大規模言語モデルのパーソナライズ
- Authors: Ruiyang Qin, Jun Xia, Zhenge Jia, Meng Jiang, Ahmed Abbasi, Peipei Zhou, Jingtong Hu, Yiyu Shi,
- Abstract要約: 本稿では,オンライン上で最も代表的なデータを自己管理的に選択・保存するための新しいフレームワークを提案する。
実験の結果,提案フレームワークは,バニラベースラインと比較して,ユーザ固有のコンテンツ生成能力(精度)と微調整速度(性能)に優れていた。
- 参考スコア(独自算出の注目度): 27.792167318819068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: After a large language model (LLM) is deployed on edge devices, it is desirable for these devices to learn from user-generated conversation data to generate user-specific and personalized responses in real-time. However, user-generated data usually contains sensitive and private information, and uploading such data to the cloud for annotation is not preferred if not prohibited. While it is possible to obtain annotation locally by directly asking users to provide preferred responses, such annotations have to be sparse to not affect user experience. In addition, the storage of edge devices is usually too limited to enable large-scale fine-tuning with full user-generated data. It remains an open question how to enable on-device LLM personalization, considering sparse annotation and limited on-device storage. In this paper, we propose a novel framework to select and store the most representative data online in a self-supervised way. Such data has a small memory footprint and allows infrequent requests of user annotations for further fine-tuning. To enhance fine-tuning quality, multiple semantically similar pairs of question texts and expected responses are generated using the LLM. Our experiments show that the proposed framework achieves the best user-specific content-generating capability (accuracy) and fine-tuning speed (performance) compared with vanilla baselines. To the best of our knowledge, this is the very first on-device LLM personalization framework.
- Abstract(参考訳): 大規模言語モデル(LLM)がエッジデバイスにデプロイされた後、ユーザ生成会話データから学習し、ユーザ固有のパーソナライズされた応答をリアルタイムで生成することが望ましい。
しかし、ユーザ生成データは通常機密情報とプライベート情報を含んでいるため、アノテーションのためにクラウドにデータをアップロードすることは、禁止されない場合は推奨されない。
アノテーションをローカルに取得するには,ユーザの好みの回答を直接求めればよいが,ユーザエクスペリエンスに影響を与えないように,このようなアノテーションを疎結合にする必要がある。
加えて、エッジデバイスのストレージは通常、完全なユーザ生成データによる大規模な微調整を可能にするために制限されている。
少ないアノテーションと限られたオンデバイスストレージを考慮して、オンデバイス LLM のパーソナライズを有効にする方法は未解決のままである。
本稿では,オンライン上で最も代表的なデータを自己管理的に選択・保存するための新しいフレームワークを提案する。
このようなデータはメモリフットプリントが小さく、ユーザアノテーションの頻繁なリクエストでさらなる微調整が可能になる。
微調整品質を高めるため、LLMを用いて複数の意味的に類似した質問文と期待応答を生成する。
実験の結果,提案フレームワークは,バニラベースラインと比較して,ユーザ固有のコンテンツ生成能力(精度)と微調整速度(性能)に優れていた。
私たちの知る限りでは、これが初めてのオンデバイスLDMパーソナライズフレームワークです。
関連論文リスト
- Optimizing Data Delivery: Insights from User Preferences on Visuals, Tables, and Text [59.68239795065175]
ユーザが質問を提示するユーザスタディを実施し、何を見たいのかを尋ねます。
ユーザの個人的特性が、彼らが好むデータ出力に影響を与えることを確認するために、このデータを使用します。
論文 参考訳(メタデータ) (2024-11-12T00:24:31Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
我々は、特定のユーザに対して最大限のメリットを提供するためにLLMを適用することに焦点を当てた、PersonalLLMという公開ベンチマークを提示する。
我々は、ユーザーが不均一な潜伏傾向を示すことを期待する高品質な回答と組み合わせたオープンエンドプロンプトをキュレートする。
私たちのデータセットと生成された個人性は、パーソナライズアルゴリズムを開発するための革新的なテストベッドを提供します。
論文 参考訳(メタデータ) (2024-09-30T13:55:42Z) - Scalable Dynamic Embedding Size Search for Streaming Recommendation [54.28404337601801]
実世界のレコメンデーションシステムは、しばしばストリーミングレコメンデーションシナリオで機能する。
ユーザやアイテムの数は増加を続けており、かなりのストレージリソース消費につながっている。
SCALLと呼ばれるストリーミングレコメンデーション用のLightweight Embeddingsを学び、ユーザ/イテムの埋め込みサイズを適応的に調整できる。
論文 参考訳(メタデータ) (2024-07-22T06:37:24Z) - Crayon: Customized On-Device LLM via Instant Adapter Blending and Edge-Server Hybrid Inference [20.666893617591136]
オンデバイス LLM カスタマイズのための新しいアプローチである Crayon を提案する。
我々は,より要求の多いクエリや非カスタマイズタスクをサーバ上のより大きな,より有能なLDMに確実に割り当てるデバイスサーバハイブリッド推論戦略を開発する。
論文 参考訳(メタデータ) (2024-06-11T07:00:08Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Partial Federated Learning [26.357723187375665]
Federated Learning(FL)は、エッジデバイスに制約されたユーザデータに基づいて機械学習モデルをトレーニングする一般的なアルゴリズムである。
そこで我々は、機械学習モデルに、データのサブセットをサーバに提供可能なデータを用いてトレーニングする、Partial Federated Learning (PartialFL) と呼ばれる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-03T21:04:36Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
ユーザの好みのダイナミックさを捉えることは、ユーザの将来の行動を予測する上で非常に重要です。
浅いものも深いものも含む、既存のレコメンデーションアルゴリズムの多くは、このようなダイナミクスを独立してモデル化することが多い。
本稿では、ユーザのシーケンシャルな振る舞いを、ユーザ好みの潜伏した空間に埋め込むことの問題について考察する。
論文 参考訳(メタデータ) (2022-04-02T03:23:46Z) - SemiPFL: Personalized Semi-Supervised Federated Learning Framework for
Edge Intelligence [15.590672649077817]
本稿では,ラベル付きデータセットやラベル付きデータセットが限定されていないエッジユーザを支援するための,半教師付きフェデレーション学習(SemiPFL)フレームワークを提案する。
この作業では、エッジユーザが協力してサーバ内のハイパーネットワークをトレーニングし、ユーザ毎にパーソナライズされたオートエンコーダを生成する。
エッジユーザから更新を受けた後、サーバは各ユーザに対してベースモデルのセットを生成し、ユーザが自身のラベル付きデータセットを使用してローカルに集約する。
論文 参考訳(メタデータ) (2022-03-15T18:09:15Z) - Generating private data with user customization [9.415164800448853]
モバイルデバイスは大量のデータを生成、保存し、機械学習モデルを強化することができる。
しかし、このデータには、データのリリースを防止するデータ所有者特有のプライベート情報が含まれている可能性がある。
有用な情報を保持しつつ、ユーザ固有のプライベート情報とデータとの相関を小さくしたい。
論文 参考訳(メタデータ) (2020-12-02T19:13:58Z) - Federated Learning of User Authentication Models [69.93965074814292]
機械学習モデルのプライバシー保護のためのフレームワークであるFederated User Authentication (FedUA)を提案する。
FedUAは、フェデレートされた学習フレームワークを採用して、ユーザが生の入力を共有することなく、共同でモデルをトレーニングできるようにする。
提案手法はプライバシ保護であり,多数のユーザに対してスケーラブルであることを示し,出力層を変更することなく,新たなユーザをトレーニングに追加できるようにした。
論文 参考訳(メタデータ) (2020-07-09T08:04:38Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。