論文の概要: HCA-Net: Hierarchical Context Attention Network for Intervertebral Disc
Semantic Labeling
- arxiv url: http://arxiv.org/abs/2311.12486v1
- Date: Tue, 21 Nov 2023 09:58:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 01:21:55.382398
- Title: HCA-Net: Hierarchical Context Attention Network for Intervertebral Disc
Semantic Labeling
- Title(参考訳): HCA-Net: 椎間板セマンティックラベリングのための階層型コンテキスト注意ネットワーク
- Authors: Afshin Bozorgpour, Bobby Azad, Reza Azad, Yury Velichko, Ulas Bagci,
Dorit Merhof
- Abstract要約: 本稿では,IVDのセマンティックラベリングのための新しいコンテキストアテンションネットワークアーキテクチャであるHCA-Netを提案する。
本手法は,脊髄内の複雑な空間的関係を捉えるために,様々なスケールの処理機能を強化し,効果的に統合する。
さらに, 骨格損失項を導入し, モデルが脊椎への幾何学的依存を強くする。
- 参考スコア(独自算出の注目度): 3.485615723221064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and automated segmentation of intervertebral discs (IVDs) in medical
images is crucial for assessing spine-related disorders, such as osteoporosis,
vertebral fractures, or IVD herniation. We present HCA-Net, a novel contextual
attention network architecture for semantic labeling of IVDs, with a special
focus on exploiting prior geometric information. Our approach excels at
processing features across different scales and effectively consolidating them
to capture the intricate spatial relationships within the spinal cord. To
achieve this, HCA-Net models IVD labeling as a pose estimation problem, aiming
to minimize the discrepancy between each predicted IVD location and its
corresponding actual joint location. In addition, we introduce a skeletal loss
term to reinforce the model's geometric dependence on the spine. This loss
function is designed to constrain the model's predictions to a range that
matches the general structure of the human vertebral skeleton. As a result, the
network learns to reduce the occurrence of false predictions and adaptively
improves the accuracy of IVD location estimation. Through extensive
experimental evaluation on multi-center spine datasets, our approach
consistently outperforms previous state-of-the-art methods on both MRI T1w and
T2w modalities. The codebase is accessible to the public on
\href{https://github.com/xmindflow/HCA-Net}{GitHub}.
- Abstract(参考訳): 脊椎変性症,脊椎骨折,IVDヘルニアなどの脊椎関連疾患の診断には,医用画像における椎間板の正確な自動分割が重要である。
本稿では,IVDのセマンティックラベリングのための新しいコンテキストアテンションネットワークアーキテクチャであるHCA-Netについて述べる。
本手法は,脊髄内の複雑な空間的関係を捉えるために,様々なスケールの処理機能を強化し,効果的に統合する。
これを実現するために、HCA-Netは、予測された各IVD位置と対応する実際の関節位置との差を最小限に抑えるために、ポーズ推定問題としてIVDラベルをモデル化する。
さらに, 骨格損失項を導入し, モデルが脊椎への幾何学的依存を強化する。
この損失関数は、モデルの予測を人間の脊椎骨格の一般的な構造に合致する範囲に限定するように設計されている。
その結果、ネットワークは誤予測の発生を低減し、IVD位置推定の精度を適応的に向上させる。
多心性脊椎データセットの広範囲な実験的評価を通じて,mri t1wとt2wの両方の最先端法を一貫して上回っている。
コードベースは \href{https://github.com/xmindflow/HCA-Net}{GitHub} で公開されている。
関連論文リスト
- Cascade learning in multi-task encoder-decoder networks for concurrent bone segmentation and glenohumeral joint assessment in shoulder CT scans [0.8974531206817744]
この研究は、肩部CTスキャンを処理する革新的なディープラーニングフレームワークを導入している。
上腕骨と肩甲骨のセグメンテーション、骨表面の3次元再構成、角膜関節領域の同定などが特徴である。
パイプラインは、セグメンテーションのための3D CEL-UNetと3倍分類のための3D Arthro-Netの2つのケースケードCNNアーキテクチャで構成されている。
論文 参考訳(メタデータ) (2024-10-16T15:00:31Z) - Geo-UNet: A Geometrically Constrained Neural Framework for Clinical-Grade Lumen Segmentation in Intravascular Ultrasound [7.760705377465734]
UNetのような現在のセグメンテーションネットワークは、IVUSにおける臨床応用に必要な精度を欠いている。
そこで我々はGeo-UNetフレームワークを提案する。
静脈性IVUSデータセットに対する我々のフレームワークの有効性を,最先端モデルに対して示す。
論文 参考訳(メタデータ) (2024-08-09T02:55:25Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
半教師付き複合脊椎ネットワーク (SSHSNet) という2段階のアルゴリズムを提案し, 同時椎体 (VBs) と椎間板 (IVDs) のセグメンテーションを実現する。
まず,2次元半監督型DeepLabv3+をクロス擬似監督を用いて構築し,スライス内特徴と粗いセグメンテーションを得た。
2段目では、3Dフル解像度のパッチベースのDeepLabv3+がスライス間情報を抽出するために構築された。
その結果,提案手法はデータ不均衡問題に対処する上で大きな可能性を秘めていることがわかった。
論文 参考訳(メタデータ) (2022-03-23T02:57:14Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
椎間板の位置と骨格構造を協調的に学習する多レベルアテンション機構を有する重畳時間ガラスネットワークを提案する。
提案した深層学習モデルは意味的セグメンテーションの強さとポーズ推定手法を考慮し,欠落した領域と偽陽性検出を扱う。
論文 参考訳(メタデータ) (2021-08-14T14:53:27Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z) - AttentionAnatomy: A unified framework for whole-body organs at risk
segmentation using multiple partially annotated datasets [30.23917416966188]
CT(Computed tomography)におけるOAR(Organs-at-risk)記述は,放射線治療(RT)計画において重要なステップである。
提案したエンドツーエンドの畳み込みニューラルネットワークモデルである textbfAttentionAnatomy は、3つの部分注釈付きデータセットで共同でトレーニングできる。
提案手法の実験結果から, ソレンセン・ディース係数 (DSC) と95%ハウスドルフ距離の両面で有意な改善が得られた。
論文 参考訳(メタデータ) (2020-01-13T18:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。