Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks
- URL: http://arxiv.org/abs/2408.05540v2
- Date: Fri, 29 Nov 2024 10:29:20 GMT
- Title: Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks
- Authors: Jianfei Li, Han Feng, Ding-Xuan Zhou,
- Abstract summary: We explore intersections between sparse coding and deep learning to enhance our understanding of feature extraction capabilities.
We derive convergence rates for convolutional neural networks (CNNs) in their ability to extract sparse features.
Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
- Score: 7.956678963695681
- License:
- Abstract: In this work, we explore intersections between sparse coding and deep learning to enhance our understanding of feature extraction capabilities in advanced neural network architectures. We begin by introducing a novel class of Deep Sparse Coding (DSC) models and establish thorough theoretical analysis of their uniqueness and stability properties. By applying iterative algorithms to these DSC models, we derive convergence rates for convolutional neural networks (CNNs) in their ability to extract sparse features. This provides a strong theoretical foundation for the use of CNNs in sparse feature learning tasks. We additionally extend the convergence analysis to more general neural network architectures, including those with diverse activation functions, as well as self-attention and transformer-based models. This broadens the applicability of our findings to a wide range of deep learning methods for deep sparse feature extraction. Inspired by the strong connection between sparse coding and CNNs, we also explore training strategies to encourage neural networks to learn more sparse features. Through numerical experiments, we demonstrate the effectiveness of these approaches, providing valuable insights for the design of efficient and interpretable deep learning models.
Related papers
- An Analysis Framework for Understanding Deep Neural Networks Based on Network Dynamics [11.44947569206928]
Deep neural networks (DNNs) maximize information extraction by rationally allocating the proportion of neurons in different modes across deep layers.
This framework provides a unified explanation for fundamental DNN behaviors such as the "flat minima effect," "grokking," and double descent phenomena.
arXiv Detail & Related papers (2025-01-05T04:23:21Z) - Preserving Information: How does Topological Data Analysis improve Neural Network performance? [0.0]
We introduce a method for integrating Topological Data Analysis (TDA) with Convolutional Neural Networks (CNN) in the context of image recognition.
Our approach, further referred to as Vector Stitching, involves combining raw image data with additional topological information.
The results of our experiments highlight the potential of incorporating results of additional data analysis into the network's inference process.
arXiv Detail & Related papers (2024-11-27T14:56:05Z) - Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures.
In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning.
arXiv Detail & Related papers (2024-04-17T08:42:42Z) - Approximation analysis of CNNs from a feature extraction view [8.94250977764275]
We establish some analysis for linear feature extraction by a deep multi-channel convolutional neural networks (CNNs)
We give an exact construction presenting how linear features extraction can be conducted efficiently with multi-channel CNNs.
Rates of function approximation by such deep networks implemented with channels and followed by fully-connected layers are investigated as well.
arXiv Detail & Related papers (2022-10-14T04:09:01Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.