論文の概要: Echocardiogram Foundation Model -- Application 1: Estimating Ejection
Fraction
- arxiv url: http://arxiv.org/abs/2311.12582v1
- Date: Tue, 21 Nov 2023 13:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 00:41:01.304194
- Title: Echocardiogram Foundation Model -- Application 1: Estimating Ejection
Fraction
- Title(参考訳): 心エコー図の基礎モデル --応用1:射出率の推定
- Authors: Adil Dahlan, Cyril Zakka, Abhinav Kumar, Laura Tang, Rohan Shad, Robyn
Fong and William Hiesinger
- Abstract要約: 心エコー基礎モデルであるエコーAIを導入し,150万個の心エコーを用いて自己教師付き学習(SSL)を用いて訓練した。
我々は,EchoAIを微調整し,平均絶対パーセンテージ誤差を9.40%と評価した。
- 参考スコア(独自算出の注目度): 2.4164193358532438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cardiovascular diseases stand as the primary global cause of mortality. Among
the various imaging techniques available for visualising the heart and
evaluating its function, echocardiograms emerge as the preferred choice due to
their safety and low cost. Quantifying cardiac function based on
echocardiograms is very laborious, time-consuming and subject to high
interoperator variability. In this work, we introduce EchoAI, an echocardiogram
foundation model, that is trained using self-supervised learning (SSL) on 1.5
million echocardiograms. We evaluate our approach by fine-tuning EchoAI to
estimate the ejection fraction achieving a mean absolute percentage error of
9.40%. This level of accuracy aligns with the performance of expert
sonographers.
- Abstract(参考訳): 心臓血管疾患は、死亡の主な原因となっている。
心臓を可視化し、その機能を評価するための様々な撮像技術のうち、心エコー図はその安全性と低コストのために好適な選択として出現する。
心エコー図に基づく心臓機能の定量化は非常に困難であり、時間を要する。
本稿では,150万個の心エコー図上で自己教師付き学習(SSL)を用いて訓練した心エコー基礎モデルであるEchoAIを紹介する。
我々は,EchoAIを微調整し,平均絶対パーセンテージ誤差を9.40%と評価した。
このレベルの精度は、専門家のソノグラフィーのパフォーマンスと一致している。
関連論文リスト
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Sequence-aware Pre-training for Echocardiography Probe Guidance [66.35766658717205]
心臓超音波は、(1)心臓の本質的に複雑な構造、(2)重要な個人差の2つの大きな課題に直面している。
これまでの研究は、心臓のパーソナライズされた構造的特徴よりも、心臓の2Dおよび3Dの人口平均構造についてしか学ばなかった。
パーソナライズされた2次元と3次元の心構造特徴を学習するためのシーケンス認識型自己教師付き事前学習法を提案する。
論文 参考訳(メタデータ) (2024-08-27T12:55:54Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
本稿では,リアルタイムなプローブ移動誘導が可能なCardiac Copilotシステムを提案する。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
論文 参考訳(メタデータ) (2024-06-19T02:42:29Z) - ConFormer: A Novel Collection of Deep Learning Models to Assist
Cardiologists in the Assessment of Cardiac Function [0.0]
本稿では,心エコーによるEFおよび左室壁厚推定の自動化を目的とした新しい深層学習モデルであるConFormerを提案する。
ConFormerの実装は、コスト効率が高く、アクセシブルで、包括的な心臓健康モニタリングを可能にすることで、予防的心臓学を強化する可能性を秘めている。
論文 参考訳(メタデータ) (2023-12-13T23:40:14Z) - M(otion)-mode Based Prediction of Ejection Fraction using
Echocardiograms [13.112371567924802]
心エコー図のM(otion)モードを用いて左室流出率(EF)を推定し,心筋症を分類する。
心エコー図から複数の人工Mモード画像を生成し,既製のモデルアーキテクチャを用いて組み合わせる。
実験の結果,教師付き設定は10モードで収束し,ベースライン法に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-09-07T15:00:58Z) - Multimodal Foundation Models For Echocardiogram Interpretation [0.24578723416255746]
1,032,975個の心エコービデオとそれに対応する専門的解釈を用いて,EchoCLIPを開発した。
EchoCLIPは、心臓機能評価において強いゼロショット(明示的に訓練されていない)パフォーマンスを示す。
また,エコーCLIP-R (Long-context variant, EchoCLIP-R) も開発した。
論文 参考訳(メタデータ) (2023-08-29T23:45:54Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - AI-enabled Assessment of Cardiac Systolic and Diastolic Function from
Echocardiography [1.0082848901582044]
左室機能(LV)は, 心疾患患者の管理, 予後, 長期生存において重要な因子である。
最近発表された心不全に関する臨床ガイドラインは、心機能の1つの尺度のみに依存することが最適であることを認めている。
近年,AIを用いた心エコー図法が進歩し,LV容積とLV放出率の自動推定に優れた結果が得られた。
論文 参考訳(メタデータ) (2022-03-21T10:59:48Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - Predicting post-operative right ventricular failure using video-based
deep learning [9.884447146588542]
術前心エコー検査から得られた全情報密度を用いて,術前右室障害(RV障害)を予測できる映像AIシステムの開発を行った。
0.729の時空、80%の感度で52%の特異度、80%の特異度で感度を達成する。
さらに,我々のMLシステムは,独立臨床評価におけるRV障害の予測に携わる人間専門家のチームよりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-28T00:58:53Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。