論文の概要: ConFormer: A Novel Collection of Deep Learning Models to Assist
Cardiologists in the Assessment of Cardiac Function
- arxiv url: http://arxiv.org/abs/2312.08567v2
- Date: Wed, 10 Jan 2024 23:36:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 02:55:27.629017
- Title: ConFormer: A Novel Collection of Deep Learning Models to Assist
Cardiologists in the Assessment of Cardiac Function
- Title(参考訳): ConFormer: 心臓機能評価における心臓科医を支援するための新しい深層学習モデル
- Authors: Ethan Thomas, Salman Aslam
- Abstract要約: 本稿では,心エコーによるEFおよび左室壁厚推定の自動化を目的とした新しい深層学習モデルであるConFormerを提案する。
ConFormerの実装は、コスト効率が高く、アクセシブルで、包括的な心臓健康モニタリングを可能にすることで、予防的心臓学を強化する可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cardiovascular diseases, particularly heart failure, are a leading cause of
death globally. The early detection of heart failure through routine
echocardiogram screenings is often impeded by the high cost and labor-intensive
nature of these procedures, a barrier that can mean the difference between life
and death. This paper presents ConFormer, a novel deep learning model designed
to automate the estimation of Ejection Fraction (EF) and Left Ventricular Wall
Thickness from echocardiograms. The implementation of ConFormer has the
potential to enhance preventative cardiology by enabling cost-effective,
accessible, and comprehensive heart health monitoring, thereby saving countless
lives. The source code is available at https://github.com/Aether111/ConFormer.
- Abstract(参考訳): 心臓血管疾患、特に心不全は、世界中で主要な死因である。
定期的な心エコー検査による心不全の早期発見は、これらの処置のコストと労働集約性によってしばしば妨げられ、これは生命と死の違いを意味する。
本稿では,心エコー法による射出率(ef)と左室壁厚の推定を自動化した新しい深層学習モデルであるconformerを提案する。
ConFormerの実装は、コスト効率が高く、アクセシビリティが高く、包括的な心臓健康モニタリングを可能にし、無数の命を救うことによって、予防的心臓病を増強する可能性がある。
ソースコードはhttps://github.com/aether111/conformerで入手できる。
関連論文リスト
- CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos [10.06966396329022]
局所心構造と運動異常のより優れた表現を学習するために,CardiacNet という新しい再構築手法を提案する。
CardiacNet には Consistency deformation Codebook (CDC) と Consistency Deformed-Discriminator (CDD) が付属している。
実験では、3つの心臓疾患評価タスクで最先端の結果が得られます。
論文 参考訳(メタデータ) (2024-10-28T06:11:03Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Sequence-aware Pre-training for Echocardiography Probe Guidance [66.35766658717205]
心臓超音波は、(1)心臓の本質的に複雑な構造、(2)重要な個人差の2つの大きな課題に直面している。
これまでの研究は、心臓のパーソナライズされた構造的特徴よりも、心臓の2Dおよび3Dの人口平均構造についてしか学ばなかった。
パーソナライズされた2次元と3次元の心構造特徴を学習するためのシーケンス認識型自己教師付き事前学習法を提案する。
論文 参考訳(メタデータ) (2024-08-27T12:55:54Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
本稿では,リアルタイムなプローブ移動誘導が可能なCardiac Copilotシステムを提案する。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
論文 参考訳(メタデータ) (2024-06-19T02:42:29Z) - Echocardiogram Foundation Model -- Application 1: Estimating Ejection
Fraction [2.4164193358532438]
心エコー基礎モデルであるエコーAIを導入し,150万個の心エコーを用いて自己教師付き学習(SSL)を用いて訓練した。
我々は,EchoAIを微調整し,平均絶対パーセンテージ誤差を9.40%と評価した。
論文 参考訳(メタデータ) (2023-11-21T13:00:03Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - M(otion)-mode Based Prediction of Ejection Fraction using
Echocardiograms [13.112371567924802]
心エコー図のM(otion)モードを用いて左室流出率(EF)を推定し,心筋症を分類する。
心エコー図から複数の人工Mモード画像を生成し,既製のモデルアーキテクチャを用いて組み合わせる。
実験の結果,教師付き設定は10モードで収束し,ベースライン法に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-09-07T15:00:58Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - A dynamic risk score for early prediction of cardiogenic shock using
machine learning [15.597400667978913]
心筋梗塞と心不全は、米国の何百万人もの人に影響を及ぼす主要な心血管疾患である。
心原性ショックの早期認識は重要である。
心原性ショックの発症を予測するため,心ICUに入院した患者を対象に,深層学習に基づくリスク階層化ツールCShockを開発した。
論文 参考訳(メタデータ) (2023-03-22T20:05:22Z) - Improved Cardiac Arrhythmia Prediction Based on Heart Rate Variability
Analysis [0.0]
心室頻拍、心室細動、発作性心房細動が最も一般的で危険な不整脈である。
本論文は, 心不整脈を非生命的な心的事象と区別するための新しい不整脈検出法と予測法を提案する。
論文 参考訳(メタデータ) (2022-06-07T12:14:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。