論文の概要: CopyScope: Model-level Copyright Infringement Quantification in the
Diffusion Workflow
- arxiv url: http://arxiv.org/abs/2311.12847v1
- Date: Fri, 13 Oct 2023 13:08:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 15:20:53.451159
- Title: CopyScope: Model-level Copyright Infringement Quantification in the
Diffusion Workflow
- Title(参考訳): CopyScope:拡散ワークフローにおけるモデルレベルの著作権侵害定量化
- Authors: Junlei Zhou and Jiashi Gao and Ziwei Wang and Xuetao Wei
- Abstract要約: 著作権侵害の定量化は、AIが生成した画像著作権トレーサビリティへの第一かつ挑戦的なステップである。
モデルレベルからAI生成画像の侵害を定量化する新しいフレームワークであるCopyScopeを提案する。
- 参考スコア(独自算出の注目度): 6.6282087165087304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Web-based AI image generation has become an innovative art form that can
generate novel artworks with the rapid development of the diffusion model.
However, this new technique brings potential copyright infringement risks as it
may incorporate the existing artworks without the owners' consent. Copyright
infringement quantification is the primary and challenging step towards
AI-generated image copyright traceability. Previous work only focused on data
attribution from the training data perspective, which is unsuitable for tracing
and quantifying copyright infringement in practice because of the following
reasons: (1) the training datasets are not always available in public; (2) the
model provider is the responsible party, not the image. Motivated by this, in
this paper, we propose CopyScope, a new framework to quantify the infringement
of AI-generated images from the model level. We first rigorously identify
pivotal components within the AI image generation pipeline. Then, we propose to
take advantage of Fr\'echet Inception Distance (FID) to effectively capture the
image similarity that fits human perception naturally. We further propose the
FID-based Shapley algorithm to evaluate the infringement contribution among
models. Extensive experiments demonstrate that our work not only reveals the
intricacies of infringement quantification but also effectively depicts the
infringing models quantitatively, thus promoting accountability in AI
image-generation tasks.
- Abstract(参考訳): WebベースのAI画像生成は、拡散モデルの急速な発展とともに、新しいアート作品を生成できる革新的な芸術形式になりつつある。
しかし、この新技術は、所有者の同意なしに既存のアートワークを組み込む可能性があるため、著作権侵害の潜在的なリスクをもたらす。
著作権侵害の定量化は、AIが生成した画像著作権トレーサビリティへの第一かつ挑戦的なステップである。
本研究は,(1) トレーニングデータセットが必ずしも公開されていないこと,(2) モデル提供者はイメージではなく責任ある当事者であること,などの理由から,著作権侵害の追跡と定量化に適さない,トレーニングデータの観点からのデータ属性のみに着目した。
そこで本稿では,モデルレベルからai生成画像の侵害を定量化する新しいフレームワークであるコピースコープを提案する。
まず、AI画像生成パイプライン内の重要なコンポーネントを厳格に識別する。
次に、Fr'echet Inception Distance(FID)を利用して、人間の知覚に自然に適合する画像の類似性を効果的に捉えることを提案する。
さらに、モデル間の侵害貢献を評価するために、FIDに基づくShapleyアルゴリズムを提案する。
広範な実験により,本研究は侵害定量化の複雑さを明らかにするだけでなく,侵害モデルを定量的に表現し,ai画像生成タスクにおける説明責任を促進することを実証した。
関連論文リスト
- Copyright-Aware Incentive Scheme for Generative Art Models Using Hierarchical Reinforcement Learning [42.63462923848866]
我々は,著作権法と裁判所における侵害に関する前例に基づく,新たな著作権基準を導入する。
次に、TRAK法を用いてデータ保持者の貢献度を推定する。
我々は,各ラウンドの予算とデータ保持者の報酬を決定するため,強化学習に基づく階層的な予算配分手法を設計する。
論文 参考訳(メタデータ) (2024-10-26T13:29:43Z) - RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model [42.77851688874563]
テキスト・画像拡散モデルのための強化学習に基づく著作権保護(RLCP)手法を提案する。
提案手法は,モデル生成データセットの品質を維持しつつ,著作権侵害コンテンツの生成を最小限に抑える。
論文 参考訳(メタデータ) (2024-08-29T15:39:33Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
本稿では,Human Feedback Inversion (HFI) というフレームワークを提案する。
実験の結果,画像品質を維持しながら,好ましくないコンテンツ生成を著しく削減し,公的な領域におけるAIの倫理的展開に寄与することが示された。
論文 参考訳(メタデータ) (2024-07-17T05:21:41Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation [19.250673262185767]
画像著作権のソーストレーシングと属性の統一的なアプローチを提案する。
本稿では,プロアクティブ戦略とパッシブ戦略を融合した革新的な透かし属性法を提案する。
オンラインで公開されている様々なセレブの肖像画シリーズを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-26T15:14:54Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
保護されたデータセットにインジェクトされたコンテンツを配置することで、不正なデータ利用を検出する手法を提案する。
具体的には、ステルス画像ワープ機能を用いて、これらの画像にユニークな内容を追加することにより、保護された画像を修正する。
このモデルが注入されたコンテンツを記憶したかどうかを解析することにより、不正に不正に使用したモデルを検出することができる。
論文 参考訳(メタデータ) (2023-07-06T16:27:39Z) - WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models [32.29120988096214]
本稿では,生成画像に責任を負うモデルフィンガープリントの新たなアプローチを提案する。
提案手法は,ユーザ固有のデジタル指紋に基づいて生成モデルを修正し,ユーザへ遡ることができるコンテンツにユニークな識別子を印字する。
論文 参考訳(メタデータ) (2023-06-07T19:44:14Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。