論文の概要: LLVM Static Analysis for Program Characterization and Memory Reuse
Profile Estimation
- arxiv url: http://arxiv.org/abs/2311.12883v1
- Date: Mon, 20 Nov 2023 23:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 17:33:54.800107
- Title: LLVM Static Analysis for Program Characterization and Memory Reuse
Profile Estimation
- Title(参考訳): LLVM静的解析によるプログラム評価とメモリ再利用プロファイルの推定
- Authors: Atanu Barai, Nandakishore Santhi, Abdur Razzak, Stephan Eidenbenz and
Abdel-Hameed A. Badawy
- Abstract要約: 本稿ではLLVMに基づく確率的静的解析手法を提案する。
プログラムの特徴を正確に予測し、プログラムの再利用距離プロファイルを推定する。
その結果,LLVMベースの動的コード解析ツールであるByflと比較して,アプリケーションの特性を正確に予測できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Profiling various application characteristics, including the number of
different arithmetic operations performed, memory footprint, etc., dynamically
is time- and space-consuming. On the other hand, static analysis methods,
although fast, can be less accurate. This paper presents an LLVM-based
probabilistic static analysis method that accurately predicts different program
characteristics and estimates the reuse distance profile of a program by
analyzing the LLVM IR file in constant time, regardless of program input size.
We generate the basic-block-level control flow graph of the target application
kernel and determine basic-block execution counts by solving the linear balance
equation involving the adjacent basic blocks' transition probabilities.
Finally, we represent the kernel memory accesses in a bracketed format and
employ a recursive algorithm to calculate the reuse distance profile. The
results show that our approach can predict application characteristics
accurately compared to another LLVM-based dynamic code analysis tool, Byfl.
- Abstract(参考訳): 異なる演算数、メモリフットプリントなど、様々なアプリケーション特性をプロファイリングすることは、時間と空間を動的に消費する。
一方で、静的解析メソッドは高速ではあるが、精度が低下する可能性がある。
本稿では,LLVM IR ファイルをプログラム入力サイズに関係なく一定時間解析することにより,プログラムの特性を正確に予測し,プログラムの再利用距離プロファイルを推定する LLVM ベースの確率的静的解析手法を提案する。
対象のアプリケーションカーネルの基本ブロックレベル制御フローグラフを生成し,隣接する基本ブロックの遷移確率を含む線形バランス方程式を解くことにより,基本ブロック実行数を決定する。
最後に,カーネルメモリアクセスを括弧形式で表現し,再帰的アルゴリズムを用いて再利用距離プロファイルを計算する。
その結果,LLVMベースの動的コード解析ツールであるByflと比較して,アプリケーションの特性を正確に予測できることがわかった。
関連論文リスト
- LLMDFA: Analyzing Dataflow in Code with Large Language Models [8.92611389987991]
本稿では,コンパイル不要でカスタマイズ可能なデータフロー解析フレームワークLLMDFAを提案する。
問題をいくつかのサブタスクに分解し、一連の新しい戦略を導入する。
LLMDFAは平均87.10%の精度と80.77%のリコールを達成し、F1スコアを最大0.35に向上させた。
論文 参考訳(メタデータ) (2024-02-16T15:21:35Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Exploring Techniques for the Analysis of Spontaneous Asynchronicity in
MPI-Parallel Applications [0.8889304968879161]
マイクロベンチマークと現実的なプロキシアプリケーションを,2つの異なるスーパーコンピュータプラットフォーム上で通常の計算通信構造で実行します。
完全MPIトレースよりもはるかに小さいデータセットから,デシンクロナイゼーションパターンを容易に識別できることを示す。
論文 参考訳(メタデータ) (2022-05-27T13:19:07Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
本稿では,勾配ベクトル場の力学に適応するメタ学習アルゴリズムであるContinuous Meta-Learning(COMLN)を紹介する。
学習プロセスをODEとして扱うことは、軌跡の長さが現在連続しているという顕著な利点を提供する。
本稿では,実行時とメモリ使用時の効率を実証的に示すとともに,いくつかの画像分類問題に対して有効性を示す。
論文 参考訳(メタデータ) (2022-03-02T22:35:58Z) - Rissanen Data Analysis: Examining Dataset Characteristics via
Description Length [78.42578316883271]
特定の能力が与えられたデータの正確なモデルを達成するのに役立つかどうかを判断する手法を提案する。
最小プログラム長は計算不可能であるため,ラベルの最小記述長(MDL)をプロキシとして推定する。
我々は、mdlの父にちなんで、rissanen data analysis (rda) と呼ぶ。
論文 参考訳(メタデータ) (2021-03-05T18:58:32Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Learning the Step-size Policy for the Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno Algorithm [3.7470451129384825]
本稿では,L-BFGSアルゴリズムのステップサイズポリシの学習方法について考察する。
入力として電流勾配の局所的な情報を用いたニューラルネットワークアーキテクチャを提案する。
ステップ長ポリシは、同様の最適化問題のデータから学習され、目的関数のさらなる評価を回避し、出力ステップが予め定義された間隔内に留まることを保証します。
論文 参考訳(メタデータ) (2020-10-03T09:34:03Z) - Transforming Probabilistic Programs for Model Checking [0.0]
確率的プログラムに静的解析を適用し、2つの重要なモデル検査手法の大部分を自動化する。
本手法は,密度関数を指定する確率的プログラムを,効率的なフォワードサンプリング形式に変換する。
本稿では,一般的なStan確率型プログラミング言語を対象とする実装を提案する。
論文 参考訳(メタデータ) (2020-08-21T21:06:34Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。