IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI
- URL: http://arxiv.org/abs/2311.12892v1
- Date: Tue, 21 Nov 2023 07:24:11 GMT
- Title: IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI
- Authors: Ruimin Feng, Qing Wu, Jie Feng, Huajun She, Chunlei Liu, Yuyao Zhang,
and Hongjiang Wei
- Abstract summary: IMJENSE is a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction.
Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms.
- Score: 11.159664312706704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parallel imaging is a commonly used technique to accelerate magnetic
resonance imaging (MRI) data acquisition. Mathematically, parallel MRI
reconstruction can be formulated as an inverse problem relating the sparsely
sampled k-space measurements to the desired MRI image. Despite the success of
many existing reconstruction algorithms, it remains a challenge to reliably
reconstruct a high-quality image from highly reduced k-space measurements.
Recently, implicit neural representation has emerged as a powerful paradigm to
exploit the internal information and the physics of partially acquired data to
generate the desired object. In this study, we introduced IMJENSE, a
scan-specific implicit neural representation-based method for improving
parallel MRI reconstruction. Specifically, the underlying MRI image and coil
sensitivities were modeled as continuous functions of spatial coordinates,
parameterized by neural networks and polynomials, respectively. The weights in
the networks and coefficients in the polynomials were simultaneously learned
directly from sparsely acquired k-space measurements, without fully sampled
ground truth data for training. Benefiting from the powerful continuous
representation and joint estimation of the MRI image and coil sensitivities,
IMJENSE outperforms conventional image or k-space domain reconstruction
algorithms. With extremely limited calibration data, IMJENSE is more stable
than supervised calibrationless and calibration-based deep-learning methods.
Results show that IMJENSE robustly reconstructs the images acquired at
5$\mathbf{\times}$ and 6$\mathbf{\times}$ accelerations with only 4 or 8
calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and
19.5% undersampling rates. The high-quality results and scanning specificity
make the proposed method hold the potential for further accelerating the data
acquisition of parallel MRI.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
This article presents a novel undersampled magnetic resonance imaging (MRI) technique that leverages the concept of Neural Radiance Field (NeRF)
With radial undersampling, the corresponding imaging problem can be reformulated into an image modeling task from sparse-view rendered data.
A multi-layer perceptron, which is designed to output an image intensity from a spatial coordinate, learns the MR physics-driven rendering relation between given measurement data and desired image.
arXiv Detail & Related papers (2024-02-20T18:37:42Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
There are still problems with dynamic MRI k-space reconstruction based on Compressed Sensing (CS)
In this paper, we propose a novel robust lowrank dynamic MRI reconstruction optimization model via highly under-sampled Fourier Transform (DFT)
Experiments on dynamic MRI data demonstrate the superior performance proposed method in terms of both reconstruction accuracy and time complexity.
arXiv Detail & Related papers (2023-10-23T13:34:59Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
implicit neural representation (INR) has emerged as a new deep learning paradigm for learning the internal continuity of an object.
The proposed method outperforms existing methods by suppressing the aliasing artifacts and noise.
The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
arXiv Detail & Related papers (2022-10-19T10:16:03Z) - Lossy compression of multidimensional medical images using sinusoidal
activation networks: an evaluation study [0.0]
We evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets.
We show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network.
Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2022-08-02T17:16:33Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
Deep neural networks have been applied to reconstruct undersampled k-space data and have shown improved reconstruction performance.
This work proposes a novel framework to learn k-space sampling trajectories by considering it as an Ordinary Differential Equation (ODE) problem.
Experiments were conducted on different in-viv datasets (textite.g., brain and knee images) acquired with different sequences.
arXiv Detail & Related papers (2022-04-05T20:28:42Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
Retrospectively applying a subsampling mask onto the k-space data is a way of simulating the accelerated acquisition of k-space data in real clinical setting.
We compare and provide a review for the effect of applying either rectilinear or radial retrospective subsampling on the quality of the reconstructions outputted by trained deep neural networks.
arXiv Detail & Related papers (2021-08-17T17:45:51Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.