SegVol: Universal and Interactive Volumetric Medical Image Segmentation
- URL: http://arxiv.org/abs/2311.13385v4
- Date: Thu, 29 Aug 2024 03:11:14 GMT
- Title: SegVol: Universal and Interactive Volumetric Medical Image Segmentation
- Authors: Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao,
- Abstract summary: We propose a 3D foundation segmentation model, named SegVol, supporting universal and interactive volumetric medical image segmentation.
By scaling up training data to 90K unlabeled Computed Tomography (CT) volumes and 6K labeled CT volumes, this foundation model supports the segmentation of over 200 anatomical categories.
Experiments on 22 anatomical segmentation tasks verify that SegVol outperforms the competitors in 19 tasks, with improvements up to 37.24% compared to the runner-up methods.
- Score: 25.322437534713163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise image segmentation provides clinical study with instructive information. Despite the remarkable progress achieved in medical image segmentation, there is still an absence of a 3D foundation segmentation model that can segment a wide range of anatomical categories with easy user interaction. In this paper, we propose a 3D foundation segmentation model, named SegVol, supporting universal and interactive volumetric medical image segmentation. By scaling up training data to 90K unlabeled Computed Tomography (CT) volumes and 6K labeled CT volumes, this foundation model supports the segmentation of over 200 anatomical categories using semantic and spatial prompts. To facilitate efficient and precise inference on volumetric images, we design a zoom-out-zoom-in mechanism. Extensive experiments on 22 anatomical segmentation tasks verify that SegVol outperforms the competitors in 19 tasks, with improvements up to 37.24% compared to the runner-up methods. We demonstrate the effectiveness and importance of specific designs by ablation study. We expect this foundation model can promote the development of volumetric medical image analysis. The model and code are publicly available at: https://github.com/BAAI-DCAI/SegVol.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - SM2C: Boost the Semi-supervised Segmentation for Medical Image by using Meta Pseudo Labels and Mixed Images [13.971120210536995]
We introduce Scaling-up Mix with Multi-Class (SM2C) to improve the ability to learn semantic features within medical images.
By diversifying the shape of the segmentation objects and enriching the semantic information within each sample, the SM2C demonstrates its potential.
The proposed framework shows significant improvements over state-of-the-art counterparts.
arXiv Detail & Related papers (2024-03-24T04:39:40Z) - One Model to Rule them All: Towards Universal Segmentation for Medical Images with Text Prompts [62.55349777609194]
We aim to build up a model that can Segment Anything in radiology scans, driven by Text prompts, termed as SAT.
We build up the largest and most comprehensive segmentation dataset for training, by collecting over 22K 3D medical image scans.
We have trained SAT-Nano (110M parameters) and SAT-Pro (447M parameters) demonstrating comparable performance to 72 specialist nnU-Nets trained on each dataset/subsets.
arXiv Detail & Related papers (2023-12-28T18:16:00Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SAM3D: Segment Anything Model in Volumetric Medical Images [11.764867415789901]
We introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis.
Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach.
arXiv Detail & Related papers (2023-09-07T06:05:28Z) - FBA-Net: Foreground and Background Aware Contrastive Learning for
Semi-Supervised Atrium Segmentation [10.11072886547561]
We propose a contrastive learning strategy of foreground and background representations for semi-supervised 3D medical image segmentation.
Our framework has the potential to advance the field of semi-supervised 3D medical image segmentation.
arXiv Detail & Related papers (2023-06-27T04:14:50Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
We propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation.
Our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner.
Our experiments demonstrate that MORSE can work well with different medical segmentation backbones.
arXiv Detail & Related papers (2023-04-06T16:44:03Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.