Ball Mill Fault Prediction Based on Deep Convolutional Auto-Encoding
Network
- URL: http://arxiv.org/abs/2311.13571v1
- Date: Thu, 9 Nov 2023 17:49:07 GMT
- Title: Ball Mill Fault Prediction Based on Deep Convolutional Auto-Encoding
Network
- Authors: Xinkun Ai, Kun Liu, Wei Zheng, Yonggang Fan, Xinwu Wu, Peilong Zhang,
LiYe Wang, JanFeng Zhu, Yuan Pan
- Abstract summary: This paper presents an anomaly detection method based on Deep Convolutional Auto-encoding Neural Networks (DCAN) for addressing the issue of ball mill bearing fault detection.
The proposed approach leverages vibration data collected during normal operation for training, overcoming challenges such as labeling issues and data imbalance often encountered in supervised learning methods.
The paper describes the practical deployment of the DCAN-based anomaly detection model for bearing fault detection, utilizing data from the ball mill bearings of Wuhan Iron & Steel Resources Group and fault data from NASA's bearing vibration dataset.
- Score: 3.673613706096849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ball mills play a critical role in modern mining operations, making their
bearing failures a significant concern due to the potential loss of production
efficiency and economic consequences. This paper presents an anomaly detection
method based on Deep Convolutional Auto-encoding Neural Networks (DCAN) for
addressing the issue of ball mill bearing fault detection. The proposed
approach leverages vibration data collected during normal operation for
training, overcoming challenges such as labeling issues and data imbalance
often encountered in supervised learning methods. DCAN includes the modules of
convolutional feature extraction and transposed convolutional feature
reconstruction, demonstrating exceptional capabilities in signal processing and
feature extraction. Additionally, the paper describes the practical deployment
of the DCAN-based anomaly detection model for bearing fault detection,
utilizing data from the ball mill bearings of Wuhan Iron & Steel Resources
Group and fault data from NASA's bearing vibration dataset. Experimental
results validate the DCAN model's reliability in recognizing fault vibration
patterns. This method holds promise for enhancing bearing fault detection
efficiency, reducing production interruptions, and lowering maintenance costs.
Related papers
- Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - A Closer Look at Bearing Fault Classification Approaches [1.9531938396288886]
Rolling bearing fault diagnosis has garnered increased attention in recent years.
Recent technological advances have enabled monitoring the health of these assets at scale.
Rolling bearing fault diagnosis has garnered increased attention in recent years.
arXiv Detail & Related papers (2023-09-29T06:11:11Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Non-contact Sensing for Anomaly Detection in Wind Turbine Blades: A
focus-SVDD with Complex-Valued Auto-Encoder Approach [2.967390112155113]
We enhance the quality assurance of manufacturing utilizing FMCW radar as a non-destructive sensing modality.
We propose a novel anomaly detection methodology called focus Support Vector Data Description (focus-SVDD)
The effectiveness of the proposed method is demonstrated through its application to collected data.
arXiv Detail & Related papers (2023-06-19T09:54:34Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
We introduce Mel-Frequency Cepstral Coefficients (MFCCs) and features extracted from the Amplitude Modulation Spectrogram (AMS) as features for the detection of bearing faults.
arXiv Detail & Related papers (2023-04-14T10:09:50Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - A Vision Transformer-Based Approach to Bearing Fault Classification via
Vibration Signals [4.287341231968003]
This study uses a state-of-the-art Vision Transformer (ViT) to classify bearing defects.
The model achieved an overall accuracy of 98.8%.
arXiv Detail & Related papers (2022-08-15T08:37:30Z) - A Multi-size Kernel based Adaptive Convolutional Neural Network for
Bearing Fault Diagnosis [5.811146610419976]
We propose a data-driven diagnostic algorithm based on the characteristics of bearing vibrations called multi-size kernel based adaptive convolutional neural network (MSKACNN)
MSKACNN provides vibration feature learning and signal classification capabilities to identify and analyze bearing faults.
arXiv Detail & Related papers (2022-03-29T06:43:30Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Detecting Faults during Automatic Screwdriving: A Dataset and Use Case
of Anomaly Detection for Automatic Screwdriving [80.6725125503521]
Data-driven approaches, using Machine Learning (ML) for detecting faults have recently gained increasing interest.
We present a use case of using ML models for detecting faults during automated screwdriving operations.
arXiv Detail & Related papers (2021-07-05T11:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.