Stability and L2-penalty in Model Averaging
- URL: http://arxiv.org/abs/2311.13827v1
- Date: Thu, 23 Nov 2023 07:11:15 GMT
- Title: Stability and L2-penalty in Model Averaging
- Authors: Hengkun Zhu, Guohua Zou
- Abstract summary: We introduce stability from statistical learning theory into model averaging.
We show that stability can ensure that model averaging has good performance and consistency under reasonable conditions.
We also propose a L2-penalty model averaging method without limiting model weights and prove that it has stability and consistency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model averaging has received much attention in the past two decades, which
integrates available information by averaging over potential models. Although
various model averaging methods have been developed, there are few literatures
on the theoretical properties of model averaging from the perspective of
stability, and the majority of these methods constrain model weights to a
simplex. The aim of this paper is to introduce stability from statistical
learning theory into model averaging. Thus, we define the stability, asymptotic
empirical risk minimizer, generalization, and consistency of model averaging
and study the relationship among them. Our results indicate that stability can
ensure that model averaging has good generalization performance and consistency
under reasonable conditions, where consistency means model averaging estimator
can asymptotically minimize the mean squared prediction error. We also propose
a L2-penalty model averaging method without limiting model weights and prove
that it has stability and consistency. In order to reduce the impact of tuning
parameter selection, we use 10-fold cross-validation to select a candidate set
of tuning parameters and perform a weighted average of the estimators of model
weights based on estimation errors. The Monte Carlo simulation and an
illustrative application demonstrate the usefulness of the proposed method.
Related papers
- Model averaging in the space of probability distributions [0.0]
We study aggregation schemes in the space of probability distributions metrized in terms of the Wasserstein distance.<n>We employ regularization schemes motivated by the standard elastic net penalization, which is shown to consistently yield models enjoying sparsity properties.<n>The proposed approach is applied to a real-world dataset of insurance losses to estimate the claim size distribution and the associated tail risk.
arXiv Detail & Related papers (2025-07-15T20:41:57Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - WASH: Train your Ensemble with Communication-Efficient Weight Shuffling, then Average [21.029085451757368]
Weight averaging methods aim at balancing the generalization of ensembling and the inference speed of a single model.
We introduce WASH, a novel distributed method for training model ensembles for weight averaging that achieves state-of-the-art image classification accuracy.
arXiv Detail & Related papers (2024-05-27T09:02:57Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a methodology for finding sequences of machine learning models that are stable across retraining iterations.
We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.
Our method shows stronger stability than greedily trained models with a small, controllable sacrifice in predictive power.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Plan To Predict: Learning an Uncertainty-Foreseeing Model for
Model-Based Reinforcement Learning [32.24146877835396]
We propose emphPlan To Predict (P2P), a framework that treats the model rollout process as a sequential decision making problem.
We show that P2P achieves state-of-the-art performance on several challenging benchmark tasks.
arXiv Detail & Related papers (2023-01-20T10:17:22Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
Model-based reinforcement learning algorithms are more sample efficient than their model-free counterparts.
We propose a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models.
We show that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging tasks.
arXiv Detail & Related papers (2021-12-16T15:33:11Z) - Optimal Model Averaging: Towards Personalized Collaborative Learning [0.0]
In federated learning, differences in the data or objectives between the participating nodes motivate approaches to train a personalized machine learning model for each node.
One such approach is weighted averaging between a locally trained model and the global model.
We find that there is always some positive amount of model averaging that reduces the expected squared error compared to the local model.
arXiv Detail & Related papers (2021-10-25T13:33:20Z) - On Statistical Efficiency in Learning [37.08000833961712]
We address the challenge of model selection to strike a balance between model fitting and model complexity.
We propose an online algorithm that sequentially expands the model complexity to enhance selection stability and reduce cost.
Experimental studies show that the proposed method has desirable predictive power and significantly less computational cost than some popular methods.
arXiv Detail & Related papers (2020-12-24T16:08:29Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Bidirectional Model-based Policy Optimization [30.732572976324516]
Model-based reinforcement learning approaches leverage a forward dynamics model to support planning and decision making.
In this paper, we propose to additionally construct a backward dynamics model to reduce the reliance on accuracy in forward model predictions.
We develop a novel method, called Bidirectional Model-based Policy (BMPO), to utilize both the forward model and backward model to generate short branched rollouts for policy optimization.
arXiv Detail & Related papers (2020-07-04T03:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.