論文の概要: Efficient Trigger Word Insertion
- arxiv url: http://arxiv.org/abs/2311.13957v1
- Date: Thu, 23 Nov 2023 12:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 23:56:06.779403
- Title: Efficient Trigger Word Insertion
- Title(参考訳): 効率的なトリガーワード挿入
- Authors: Yueqi Zeng, Ziqiang Li, Pengfei Xia, Lei Liu, Bin Li
- Abstract要約: 我々の主な目的は、テキストバックドア攻撃において、良好なアタック成功率(ASR)を達成しつつ、有毒なサンプルの数を減らすことである。
トリガー語最適化と有毒なサンプル選択の観点から,効率的なトリガー語挿入戦略を提案する。
提案手法は, 汚れラベル設定で有毒な試料が10個あれば90%以上を達成でき, クリーンラベル設定ではトレーニングデータの1.5%しか必要としない。
- 参考スコア(独自算出の注目度): 9.257916713112945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the boom in the natural language processing (NLP) field these years,
backdoor attacks pose immense threats against deep neural network models.
However, previous works hardly consider the effect of the poisoning rate. In
this paper, our main objective is to reduce the number of poisoned samples
while still achieving a satisfactory Attack Success Rate (ASR) in text backdoor
attacks. To accomplish this, we propose an efficient trigger word insertion
strategy in terms of trigger word optimization and poisoned sample selection.
Extensive experiments on different datasets and models demonstrate that our
proposed method can significantly improve attack effectiveness in text
classification tasks. Remarkably, our approach achieves an ASR of over 90% with
only 10 poisoned samples in the dirty-label setting and requires merely 1.5% of
the training data in the clean-label setting.
- Abstract(参考訳): 近年、自然言語処理(NLP)分野のブームにより、バックドア攻撃はディープニューラルネットワークモデルに対して重大な脅威となる。
しかし、前回の研究は中毒率の影響をほとんど考慮していない。
本研究の目的は,テキストバックドア攻撃における適切な攻撃成功率(asr)を保ちながら,被毒サンプル数を削減することである。
そこで本研究では,トリガーワードの最適化と有毒サンプル選択の観点から,効率的なトリガーワード挿入戦略を提案する。
異なるデータセットとモデルに関する広範囲な実験により,提案手法がテキスト分類タスクにおける攻撃効率を著しく向上できることが証明された。
また,本手法は汚れラベル設定では10個の有毒試料のみで90%以上を達成でき,クリーンラベル設定ではトレーニングデータの1.5%しか必要としない。
関連論文リスト
- SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Shortcuts Arising from Contrast: Effective and Covert Clean-Label Attacks in Prompt-Based Learning [40.130762098868736]
本稿では、アクティベーション値を活用し、トリガ設計とデータ選択戦略を統合して、より強力なショートカット機能を実現するContrastive Shortcut Injection (CSI) を提案する。
フルショットおよび少数ショットのテキスト分類タスクに関する広範な実験により、CSIの高有効性と高い盗聴性を低毒性率で実証的に検証した。
論文 参考訳(メタデータ) (2024-03-30T20:02:36Z) - Progressive Poisoned Data Isolation for Training-time Backdoor Defense [23.955347169187917]
ディープニューラルネットワーク(DNN)は、悪意のある攻撃者がデータ中毒によってモデルの予測を操作するバックドア攻撃の影響を受けやすい。
本研究では, PPD (Progressive isolated of Poisoned Data) と呼ばれる, 新規かつ効果的な防御手法を提案する。
我々のPIPDは99.95%の平均真正率(TPR)を達成し、CIFAR-10データセットに対する多様な攻撃に対して平均偽正率(FPR)を0.06%とした。
論文 参考訳(メタデータ) (2023-12-20T02:40:28Z) - Explore the Effect of Data Selection on Poison Efficiency in Backdoor
Attacks [10.817607451423765]
本研究では,サンプル選択の観点から,バックドアアタックの毒殺効率の向上に焦点をあてる。
各種毒物試料の寄与を示すために, 試料の忘れイベントを採用し, 損失面の曲率を用いて, この現象の有効性を解析した。
論文 参考訳(メタデータ) (2023-10-15T05:55:23Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
信頼性スコアの低いサンプルを選別し、これらの攻撃を識別・対処する上で、守備側の課題を著しく増大させる。
論文 参考訳(メタデータ) (2023-10-08T18:57:36Z) - Not All Poisons are Created Equal: Robust Training against Data
Poisoning [15.761683760167777]
データ中毒は、トレーニングデータに悪意ある工芸品のサンプルを注入することで、テスト時間対象のサンプルを誤分類する。
各種データ中毒攻撃の成功率を大幅に低減する効率的な防御機構を提案する。
論文 参考訳(メタデータ) (2022-10-18T08:19:41Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Data-Efficient Backdoor Attacks [14.230326737098554]
ディープニューラルネットワークはバックドア攻撃に弱い。
本稿では,その選択による毒性データ効率の向上について定式化する。
同じ攻撃成功率は、有毒サンプル量のわずか47%から75%で達成できる。
論文 参考訳(メタデータ) (2022-04-22T09:52:22Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
離散データ(テキストなど)に対するアドリアック攻撃は、連続データ(画像など)よりも難しい。
対戦型サンプルを生成するための高品質で効果的な方法である textbfBERT-Attack を提案する。
本手法は、成功率と摂動率の両方において、最先端の攻撃戦略より優れている。
論文 参考訳(メタデータ) (2020-04-21T13:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。