Two-dimensional coherent spectrum of high-spin models via a quantum computing approach
- URL: http://arxiv.org/abs/2311.14035v4
- Date: Mon, 3 Jun 2024 21:35:47 GMT
- Title: Two-dimensional coherent spectrum of high-spin models via a quantum computing approach
- Authors: Martin Mootz, Peter P. Orth, Chuankun Huang, Liang Luo, Jigang Wang, Yong-Xin Yao,
- Abstract summary: We benchmark a quantum computing approach to calculate the two-dimensional coherent spectrum (2DCS) of high-spin models.
By comparing the one-dimensional coherent spectrum with 2DCS, we demonstrate that 2DCS provides a higher resolution of the energy spectrum.
Numerical simulations for spin models with increasing number of sites indicate a system-size scaling for quantum resources.
- Score: 0.5079040627982536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and benchmark a quantum computing approach to calculate the two-dimensional coherent spectrum (2DCS) of high-spin models. Our approach is based on simulating their real-time dynamics in the presence of several magnetic field pulses, which are spaced in time. We utilize the adaptive variational quantum dynamics simulation (AVQDS) algorithm for the study due to its compact circuits, which enables simulations over sufficiently long times to achieve the required resolution in frequency space. Specifically, we consider an antiferromagnetic quantum spin model that incorporates Dzyaloshinskii-Moriya interactions and single-ion anisotropy. The obtained 2DCS spectra exhibit distinct peaks at multiples of the magnon frequency, arising from transitions between different eigenstates of the unperturbed Hamiltonian. By comparing the one-dimensional coherent spectrum with 2DCS, we demonstrate that 2DCS provides a higher resolution of the energy spectrum. We further investigate how the quantum resources scale with the magnitude of the spin using two different binary encodings of the high-spin operators: the standard binary encoding and the Gray code. At low magnetic fields both encodings require comparable quantum resources, but at larger field strengths the Gray code is advantageous. Numerical simulations for spin models with increasing number of sites indicate a polynomial system-size scaling for quantum resources. Lastly, we compare the numerical 2DCS with experimental results on a rare-earth orthoferrite system. The observed strength of the magnonic high-harmonic generation signals in the 2DCS of the quantum high-spin model aligns well with the experimental data, showing significant improvement over the corresponding mean-field results.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum tensor networks algorithms for evaluation of spectral functions
on quantum computers [0.0]
We investigate quantum algorithms derived from tensor networks to simulate the static and dynamic properties of quantum many-body systems.
We demonstrate algorithms to prepare ground and excited states on a quantum computer and apply them to molecular nanomagnets (MNMs) as a paradigmatic example.
arXiv Detail & Related papers (2023-09-26T18:01:42Z) - Antiferromagnetic bosonic $t$-$J$ models and their quantum simulation in tweezer arrays [0.0]
We propose an experimental scheme to realize bosonic t-J models via encoding the local Hilbert space in a set of three internal atomic or molecular states.
By engineering antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic order similar to that in high-$T_c$ cuprates can be realized.
arXiv Detail & Related papers (2023-05-03T17:59:59Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - High-fidelity dimer excitations using quantum hardware [1.3977204802483425]
We simulate the dynamics of a quantum spin dimer, the basic quantum unit of emergent many-body spin systems.
Results pave an important avenue to benchmark, or even predict, the outputs of the costly INS experiments.
arXiv Detail & Related papers (2023-04-12T20:12:28Z) - Highly resolved spectral functions of two-dimensional systems with
neural quantum states [0.0]
We develop a versatile approach using neural quantum states to obtain spectral properties based on simulations of excitations initially localized in real or momentum space.
Our approach is broadly applicable to interacting quantum lattice models in two dimensions and opens up a route to compute spectral properties of correlated quantum matter in yet inaccessible regimes.
arXiv Detail & Related papers (2023-03-14T19:00:27Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps.
We present a hybrid classical-quantum approach to the binary classification of polymer structures.
arXiv Detail & Related papers (2022-11-22T11:59:52Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Dynamics in an exact solvable quantum magnet: benchmark for quantum
computer [2.643309520855375]
We explore the dynamic behavior of 2D large-scale ferromagnetic J1-J2 Heisenberg model both theoretically and experimentally.
A quantum walk experiment is designed and conducted on the basis of IBM programmable quantum processors.
arXiv Detail & Related papers (2021-09-23T13:32:45Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.