論文の概要: Towards Interpretable Classification of Leukocytes based on Deep
Learning
- arxiv url: http://arxiv.org/abs/2311.14485v1
- Date: Fri, 24 Nov 2023 13:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 14:59:36.853563
- Title: Towards Interpretable Classification of Leukocytes based on Deep
Learning
- Title(参考訳): 深層学習に基づく白血球の解釈的分類に向けて
- Authors: Stefan R\"ohrl and Johannes Groll and Manuel Lengl and Simon Schumann
and Christian Klenk and Dominik Heim and Martin Knopp and Oliver Hayden and
Klaus Diepold
- Abstract要約: 本研究は、白血球の自動分類における信頼度推定の校正について検討する。
さらに、異なる視覚的説明アプローチを比較することで、機械による意思決定を専門の医療アプリケーションに近づけることができます。
- 参考スコア(独自算出の注目度): 0.7227323884094953
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Label-free approaches are attractive in cytological imaging due to their
flexibility and cost efficiency. They are supported by machine learning
methods, which, despite the lack of labeling and the associated lower contrast,
can classify cells with high accuracy where the human observer has little
chance to discriminate cells. In order to better integrate these workflows into
the clinical decision making process, this work investigates the calibration of
confidence estimation for the automated classification of leukocytes. In
addition, different visual explanation approaches are compared, which should
bring machine decision making closer to professional healthcare applications.
Furthermore, we were able to identify general detection patterns in neural
networks and demonstrate the utility of the presented approaches in different
scenarios of blood cell analysis.
- Abstract(参考訳): ラベルフリーアプローチは、柔軟性とコスト効率のため、細胞学的イメージングにおいて魅力的である。
これらは、ラベル付けの欠如とそれに伴う低コントラストにもかかわらず、人間の観察者が細胞を識別する機会がほとんどない高い精度で細胞を分類できる機械学習手法によって支持されている。
本研究は,これらのワークフローを臨床意思決定プロセスに統合するために,白血球の自動分類における信頼性評価のキャリブレーションについて検討する。
さらに、異なる視覚的説明アプローチを比較することで、機械による意思決定を専門の医療アプリケーションに近づけることができる。
さらに,ニューラルネットワークの一般的な検出パターンを同定し,血液細胞解析のさまざまなシナリオにおいて提案手法の有用性を実証した。
関連論文リスト
- Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for
Patients with Cerebral Palsy [43.55994393060723]
gaitXplorerは、CP関連歩行パターンの分類のための視覚分析手法である。
Grad-CAMは、機械学習の分類の説明のために、よく確立された説明可能な人工知能アルゴリズムである。
論文 参考訳(メタデータ) (2022-08-10T09:21:28Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - An Interpretable Algorithm for Uveal Melanoma Subtyping from Whole Slide
Cytology Images [3.33281597371121]
細針吸引生検のデジタル画像を用いたぶどう膜黒色腫の自動診断システムについて述べる。
提案手法は,多数の代表スライドで定義される2次元多様体の点として,候補画像の自動区切りセルを埋め込む。
円歪した2次元多様体の分割に対して規則に基づくスライドレベル分類アルゴリズムを訓練する。
論文 参考訳(メタデータ) (2021-08-13T13:55:08Z) - Towards Interpretable Attention Networks for Cervical Cancer Analysis [24.916577293892182]
複数の頸腺細胞の画像分類における最先端ディープラーニングモデルの評価を行った。
細胞群から重要な特徴を抽出するための残チャンネルアテンションモデルの有効性を示す。
また、子宮頸部細胞の分類に対処するための解釈可能なモデルも提供する。
論文 参考訳(メタデータ) (2021-05-27T13:28:24Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Cell Mechanics Based Computational Classification of Red Blood Cells Via
Machine Intelligence Applied to Morpho-Rheological Markers [0.0]
非教師なし機械学習手法は、リアルタイム変形性と蛍光(RT-FDC)により得られる形態・レオロジーマーカーにのみ適用される
提案手法は, 成熟赤血球由来の赤血球の分類において, ラベルフリーで有望な結果が得られたことを報告した。
論文 参考訳(メタデータ) (2020-03-02T15:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。