Bayesian Neural Networks for 2D MRI Segmentation
- URL: http://arxiv.org/abs/2311.14875v3
- Date: Sun, 15 Sep 2024 20:36:12 GMT
- Title: Bayesian Neural Networks for 2D MRI Segmentation
- Authors: Lohith Konathala,
- Abstract summary: We introduce BA U-Net, an uncertainty-aware model for MRI segmentation.
BA U-Net delivers accurate, interpretable results, crucial for reliable pathology screening.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification is vital for safety-critical Deep Learning applications like medical image segmentation. We introduce BA U-Net, an uncertainty-aware model for MRI segmentation that integrates Bayesian Neural Networks with Attention Mechanisms. BA U-Net delivers accurate, interpretable results, crucial for reliable pathology screening. Evaluated on BraTS 2020, this model addresses the critical need for confidence estimation in deep learning-based medical imaging.
Related papers
- Enhanced Uncertainty Estimation in Ultrasound Image Segmentation with MSU-Net [13.489622701621698]
We introduce MSU-Net, a novel multistage approach for training an ensemble of U-Nets to yield accurate ultrasound image segmentation maps.
We demonstrate substantial improvements, 18.1% over a single Monte Carlo U-Net, enhancing uncertainty evaluations, model transparency, and trustworthiness.
arXiv Detail & Related papers (2024-07-31T01:36:47Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIA is a trustworthy deep learning framework for medical image analysis.
It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
arXiv Detail & Related papers (2022-12-06T05:30:22Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Evaluation of importance estimators in deep learning classifiers for
Computed Tomography [1.6710577107094642]
Interpretability of deep neural networks often relies on estimating the importance of input features.
Two versions of SmoothGrad topped the fidelity and ROC rankings, whereas both Integrated Gradients and SmoothGrad excelled in DSC evaluation.
There was a critical discrepancy between model-centric (fidelity) and human-centric (ROC and DSC) evaluation.
arXiv Detail & Related papers (2022-09-30T11:57:25Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
Building AI models with trustworthiness is important especially in regulated areas such as healthcare.
Previous work uses convolutional neural networks as the backbone architecture, which has shown to be prone to over-caution and overconfidence in making decisions.
We propose a feature learning approach using Vision Transformers, which use an attention-based mechanism.
arXiv Detail & Related papers (2022-07-19T14:55:42Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - A Feasibility study for Deep learning based automated brain tumor
segmentation using Magnetic Resonance Images [0.0]
A deep convolutional neural network (CNN) based classification network and Faster RCNN based localization network were developed for brain tumor MR image classification and tumor localization.
Overall performance of the proposed tumor segmentation architecture, was analyzed using objective quality parameters including Accuracy, Boundary Displacement Error (BDE), Dice score and confidence interval.
It was observed that the confidence level of our segmented output was in a similar range to that of experts.
arXiv Detail & Related papers (2020-12-22T12:11:42Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Uncertainty Quantification using Variational Inference for Biomedical Image Segmentation [0.0]
We use an encoder decoder architecture based on variational inference techniques for segmenting brain tumour images.
We evaluate our work on the publicly available BRATS dataset using Dice Similarity Coefficient (DSC) and Intersection Over Union (IOU) as the evaluation metrics.
arXiv Detail & Related papers (2020-08-12T20:08:04Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.