論文の概要: Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via
3D Anomaly Synthesis and A Self-Supervised Learning Network
- arxiv url: http://arxiv.org/abs/2311.14897v1
- Date: Sat, 25 Nov 2023 01:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 23:11:58.254523
- Title: Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via
3D Anomaly Synthesis and A Self-Supervised Learning Network
- Title(参考訳): スケーラブルな3次元異常検出と局所化に向けて:3次元異常合成と自己改善学習ネットワークによるベンチマーク
- Authors: Wenqiao Li, Xiaohao Xu
- Abstract要約: 本稿では,既存の大規模3次元モデルに適応して3次元異常検出を行うための3次元異常合成パイプラインを提案する。
Anomaly-ShapeNetは、40カテゴリ以下の1600点のクラウドサンプルで構成され、リッチで多様なデータ収集を提供する。
また、3次元異常局所化のためのスケーラブルな表現学習を可能にする自己教師型マスク再構成ネットワーク(IMRNet)を提案する。
- 参考スコア(独自算出の注目度): 1.90365714903665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, 3D anomaly detection, a crucial problem involving fine-grained
geometry discrimination, is getting more attention. However, the lack of
abundant real 3D anomaly data limits the scalability of current models. To
enable scalable anomaly data collection, we propose a 3D anomaly synthesis
pipeline to adapt existing large-scale 3Dmodels for 3D anomaly detection.
Specifically, we construct a synthetic dataset, i.e., Anomaly-ShapeNet, basedon
ShapeNet. Anomaly-ShapeNet consists of 1600 point cloud samples under 40
categories, which provides a rich and varied collection of data, enabling
efficient training and enhancing adaptability to industrial scenarios.
Meanwhile,to enable scalable representation learning for 3D anomaly
localization, we propose a self-supervised method, i.e., Iterative Mask
Reconstruction Network (IMRNet). During training, we propose a geometry-aware
sample module to preserve potentially anomalous local regions during point
cloud down-sampling. Then, we randomly mask out point patches and sent the
visible patches to a transformer for reconstruction-based self-supervision.
During testing, the point cloud repeatedly goes through the Mask Reconstruction
Network, with each iteration's output becoming the next input. By merging and
contrasting the final reconstructed point cloud with the initial input, our
method successfully locates anomalies. Experiments show that IMRNet outperforms
previous state-of-the-art methods, achieving 66.1% in I-AUC on Anomaly-ShapeNet
dataset and 72.5% in I-AUC on Real3D-AD dataset. Our dataset will be released
at https://github.com/Chopper-233/Anomaly-ShapeNet
- Abstract(参考訳): 近年,細粒度形状の識別に関わる重要な問題である3次元異常検出が注目されている。
しかし、豊富な実3D異常データの欠如は、現在のモデルのスケーラビリティを制限している。
スケーラブルな異常データ収集を実現するため,既存の大規模3次元モデルに適応する3次元異常合成パイプラインを提案する。
具体的には,ShapeNetに基づく合成データセット,すなわちAnomaly-ShapeNetを構築する。
Anomaly-ShapeNetは、40カテゴリ以下の1600点のクラウドサンプルで構成されており、豊かで多様なデータの収集を提供し、効率的なトレーニングと産業シナリオへの適応性の向上を可能にする。
一方,3次元異常局所化のためのスケーラブルな表現学習を実現するために,反復マスク再構成ネットワーク(IMRNet)を提案する。
学習中,ポイントクラウドダウンサンプリング中に異常な局所領域を保存できる幾何対応サンプルモジュールを提案する。
そして、ランダムに点パッチをマスクし、可視パッチを変換器に送信し、再構成に基づく自己監督を行う。
テスト中、ポイントクラウドは繰り返しマスク再構成ネットワークを通過し、各イテレーションの出力が次の入力となる。
最終再構成点雲と初期入力をマージして対比することにより, 異常を同定することに成功した。
実験の結果、IMRNetは従来の最先端の手法よりも優れており、Anomaly-ShapeNetデータセットでは66.1%、Real3D-ADデータセットでは72.5%である。
私たちのデータセットはhttps://github.com/Chopper-233/Anomaly-ShapeNetでリリースされます。
関連論文リスト
- Test-Time Adaptation of 3D Point Clouds via Denoising Diffusion Models [19.795578581043745]
3Dポイントクラウドのテスト時間適応は、実世界のシナリオにおけるトレーニングとテストサンプルの相違を緩和するために不可欠である。
本稿では,3D Denoising Diffusion Test-Time Adaptationの略である3DD-TTAと呼ばれる新しい3Dテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-11-21T00:04:38Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection [12.207437451118036]
3次元異常検出は、精密製造における局所固有の欠陥のモニタリングにおいて重要な役割を担っている。
埋め込みベースおよび再構築ベースのアプローチは、最も人気があり、成功した方法の一つである。
本稿では, 高精度な3次元異常検出のための拡散モデルにより, 異常点雲を再構成するR3D-ADを提案する。
論文 参考訳(メタデータ) (2024-07-15T16:10:58Z) - Real3D-AD: A Dataset of Point Cloud Anomaly Detection [75.56719157477661]
本稿では,高精度なクラウド異常検出データセットであるReal3D-ADを紹介する。
1,254個の高解像度の3Dアイテムが、各項目に4万から数百万のポイントがあり、Real3D-ADは高精度な3D産業異常検出のための最大のデータセットである。
本稿では,高精度点雲異常検出のためのベースライン手法が存在しないことを明らかにする,Real3D-ADの総合ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-09-23T00:43:38Z) - Toward Unsupervised 3D Point Cloud Anomaly Detection using Variational
Autoencoder [10.097126085083827]
本稿では3次元点雲に対するエンドツーエンドの教師なし異常検出フレームワークを提案する。
本稿では,3次元点群に適応した深部変分自動エンコーダに基づく非教師なし異常検出ネットワークと,特に3次元点群に対する異常スコアを提案する。
論文 参考訳(メタデータ) (2023-04-07T00:02:37Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
本稿では,CAGroup3Dという新しい2段階完全スパース3Dオブジェクト検出フレームワークを提案する。
提案手法は,まず,オブジェクト表面のボクセル上でのクラス認識型局所群戦略を活用することによって,高品質な3D提案を生成する。
不正なボクセルワイドセグメンテーションにより欠落したボクセルの特徴を回復するために,完全にスパースな畳み込み型RoIプールモジュールを構築した。
論文 参考訳(メタデータ) (2022-10-09T13:38:48Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
自律走行のためのLiDARを用いた3次元物体検出では、物体サイズと入力シーンサイズとの比が2次元検出の場合に比べて有意に小さい。
多くの3D検出器は2D検出器の一般的な慣習に従っており、点雲の定量化後も特徴マップを分解する。
本稿では,SST(Single-stride Sparse Transformer)を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:12:02Z) - H3D: Benchmark on Semantic Segmentation of High-Resolution 3D Point
Clouds and textured Meshes from UAV LiDAR and Multi-View-Stereo [4.263987603222371]
本稿では,3つの方法でユニークな3次元データセットを提案する。
ヘシグハイム(ドイツ語: Hessigheim, H3D)は、ドイツの都市。
片手で3次元データ分析の分野での研究を促進するとともに、新しいアプローチの評価とランク付けを目的としている。
論文 参考訳(メタデータ) (2021-02-10T09:33:48Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
本稿では,3Dポイントのクラウド上で動作し,エンド・ツー・エンドのアプローチを用いてシーンの基盤となるDTMを推定するアルゴリズムを提案する。
我々のモデルは近隣情報を学習し、これをポイントワイドでブロックワイドなグローバルな特徴とシームレスに統合する。
論文 参考訳(メタデータ) (2020-05-21T15:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。