論文の概要: Parkinson's Disease Classification Using Contrastive Graph Cross-View Learning with Multimodal Fusion of SPECT Images and Clinical Features
- arxiv url: http://arxiv.org/abs/2311.14902v3
- Date: Sat, 4 May 2024 00:30:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 00:15:17.487843
- Title: Parkinson's Disease Classification Using Contrastive Graph Cross-View Learning with Multimodal Fusion of SPECT Images and Clinical Features
- Title(参考訳): SPECT画像のマルチモーダル融合によるコントラストグラフクロスビュー学習を用いたパーキンソン病の分類と臨床像
- Authors: Jun-En Ding, Chien-Chin Hsu, Feng Liu,
- Abstract要約: パーキンソン病(PD)は世界中の何百万もの人に影響を与え、運動に影響を与えている。
以前の研究では、ディープラーニングをPD予測に利用し、主に医療画像に焦点を当て、データの基盤となる多様体構造を無視した。
本研究では,画像特徴と非画像特徴の両方を包含するマルチモーダルアプローチを提案し,PD分類にコントラッシブなクロスビューグラフ融合を利用する。
- 参考スコア(独自算出の注目度): 5.660131312162423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's Disease (PD) affects millions globally, impacting movement. Prior research utilized deep learning for PD prediction, primarily focusing on medical images, neglecting the data's underlying manifold structure. This work proposes a multimodal approach encompassing both image and non-image features, leveraging contrastive cross-view graph fusion for PD classification. We introduce a novel multimodal co-attention module, integrating embeddings from separate graph views derived from low-dimensional representations of images and clinical features. This enables more robust and structured feature extraction for improved multi-view data analysis. Additionally, a simplified contrastive loss-based fusion method is devised to enhance cross-view fusion learning. Our graph-view multimodal approach achieves an accuracy of 91% and an area under the receiver operating characteristic curve (AUC) of 92.8% in five-fold cross-validation. It also demonstrates superior predictive capabilities on non-image data compared to solely machine learning-based methods.
- Abstract(参考訳): パーキンソン病(PD)は世界中の何百万もの人に影響を与え、運動に影響を与えている。
以前の研究では、ディープラーニングをPD予測に利用し、主に医療画像に焦点を当て、データの基盤となる多様体構造を無視した。
本研究では,画像特徴と非画像特徴の両方を包含するマルチモーダルアプローチを提案し,PD分類にコントラッシブなクロスビューグラフ融合を利用する。
画像と臨床特徴の低次元表現から得られたグラフビューからの埋め込みを統合した,新しいマルチモーダル・コアテンション・モジュールを提案する。
これにより、より堅牢で構造化された特徴抽出が実現され、マルチビューデータ分析が改善される。
さらに、クロスビュー融合学習を強化するために、簡易なコントラッシブ・ロスベース融合法が考案された。
グラフビューによるマルチモーダル手法は,5倍のクロスバリデーションにおいて,91%の精度と受信特性曲線(AUC)以下の面積を92.8%の精度で達成する。
また、単に機械学習ベースの手法と比較して、非画像データに対して優れた予測能力を示す。
関連論文リスト
- Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning [0.46835339362676565]
脳卒中の早期発見は介入に不可欠であり、信頼できるモデルを必要とする。
臨床情報とともに効率的な網膜像表現法を提案し,心血管の健康状態の包括的把握を試みた。
論文 参考訳(メタデータ) (2024-11-08T14:40:56Z) - Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [5.660131312162423]
本稿では,マルチモーダルな医用画像分類のためのクロスグラフ・モーダルコントラスト学習フレームワークを提案する。
提案手法は、パーキンソン病(PD)データセットと公共メラノーマデータセットの2つのデータセットで評価される。
以上の結果から,CGMCLは従来手法よりも精度,解釈可能性,早期疾患予測に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-10-23T01:25:25Z) - MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction [8.592259720470697]
脳障害予測のためのマルチモーダルグラフ深層学習フレームワークMM-GTUNetsを提案する。
本稿では,報酬システムを用いて集団グラフを適応的に構築するMRRL(Modality Reward Representation Learning)を提案する。
また,ACMGL(Adaptive Cross-Modal Graph Learning)を提案する。
論文 参考訳(メタデータ) (2024-06-20T16:14:43Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
深層学習技術を用いた医用画像超解像(SR)再構成は、病変解析を強化し、診断効率と精度を向上させるために医師を支援する。
既存のディープラーニングベースのSR手法は、これらのモデルの表現能力を本質的に制限する畳み込みニューラルネットワーク(CNN)に依存している。
画像特徴抽出に複数の畳み込み演算子特徴抽出モジュール(MCO)を用いるAネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T06:14:22Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
病気予測のためのエンドツーエンドのマルチモーダルグラフ学習フレームワーク(MMGL)を提案する。
隣接行列を既存の手法として手動で定義する代わりに、潜在グラフ構造を適応グラフ学習の新しい方法によって捉えることができる。
論文 参考訳(メタデータ) (2021-07-01T03:59:22Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。