論文の概要: Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for
Visual Insect Understanding
- arxiv url: http://arxiv.org/abs/2311.15206v1
- Date: Sun, 26 Nov 2023 06:17:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 19:01:15.108200
- Title: Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for
Visual Insect Understanding
- Title(参考訳): Insect-Foundation: Visual Insect Understandingのための基盤モデルと大規模100万データセット
- Authors: Hoang-Quan Nguyen, Thanh-Dat Truong, Xuan Bac Nguyen, Ashley Dowling,
Xin Li, Khoa Luu
- Abstract要約: 現在のマシンビジョンモデルは、高いパフォーマンスを達成するために大量のデータを必要とする。
世界で約550万種の昆虫が生息している。
Insect-1M'データセットは,昆虫に関する基礎モデルトレーニングに革命をもたらすことを意図したゲーム変更リソースである。
- 参考スコア(独自算出の注目度): 16.300183316573882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In precision agriculture, the detection and recognition of insects play an
essential role in the ability of crops to grow healthy and produce a
high-quality yield. The current machine vision model requires a large volume of
data to achieve high performance. However, there are approximately 5.5 million
different insect species in the world. None of the existing insect datasets can
cover even a fraction of them due to varying geographic locations and
acquisition costs. In this paper, we introduce a novel ``Insect-1M'' dataset, a
game-changing resource poised to revolutionize insect-related foundation model
training. Covering a vast spectrum of insect species, our dataset, including 1
million images with dense identification labels of taxonomy hierarchy and
insect descriptions, offers a panoramic view of entomology, enabling foundation
models to comprehend visual and semantic information about insects like never
before. Then, to efficiently establish an Insect Foundation Model, we develop a
micro-feature self-supervised learning method with a Patch-wise Relevant
Attention mechanism capable of discerning the subtle differences among insect
images. In addition, we introduce Description Consistency loss to improve
micro-feature modeling via insect descriptions. Through our experiments, we
illustrate the effectiveness of our proposed approach in insect modeling and
achieve State-of-the-Art performance on standard benchmarks of insect-related
tasks. Our Insect Foundation Model and Dataset promise to empower the next
generation of insect-related vision models, bringing them closer to the
ultimate goal of precision agriculture.
- Abstract(参考訳): 精密農業において、昆虫の検出と認識は、作物が健康に育ち、高品質な収量を生み出す能力において重要な役割を果たす。
現在のマシンビジョンモデルは、高いパフォーマンスを達成するために大量のデータを必要とする。
しかし、世界中で約550万種の昆虫が生息している。
既存の昆虫のデータセットは、地理的に異なる場所と取得コストのために、そのわずかしかカバーできない。
本稿では,昆虫に関する基礎モデルトレーニングに革命をもたらすゲーム変換リソースである'Insect-1M''データセットを紹介する。
私たちのデータセットは昆虫の幅広い範囲をカバーしており、100万枚の画像に分類階層と昆虫の記述の密接な識別ラベルがあり、昆虫学のパノラマ的なビューを提供しています。
そこで本研究では,昆虫画像間の微妙な相違を識別できるパッチワイド関連注意機構を備えた,微小機能自己教師型学習法を開発した。
さらに,昆虫記述による微小機能モデリングを改善するために,記述一貫性損失を導入する。
本研究は,昆虫モデルにおける提案手法の有効性を実証し,昆虫関連課題の標準ベンチマークにおける最新性能を実現する。
当社の昆虫財団モデルとデータセットは、次世代昆虫関連視覚モデルに力を与え、精密農業の究極の目標に近付くことを約束しています。
関連論文リスト
- Deep-Wide Learning Assistance for Insect Pest Classification [1.9912919001438378]
昆虫害虫分類のための新しい学習支援であるDeWiについて紹介する。
1段階のトレーニング戦略と交互トレーニング戦略により、DeWiは同時に、いくつかの畳み込みニューラルネットワークを改善している。
実験の結果,2つの害虫分類ベンチマークにおいて,DeWiが最も高い性能を示した。
論文 参考訳(メタデータ) (2024-09-16T16:29:41Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
昆虫生産には 最大限の可能性を実現するために 最適化が必要です
これは選択的育種による興味のある形質の改善が目的である。
このレビューは、様々な分野の知識と、動物の繁殖、定量的遺伝学、進化生物学、昆虫学のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-06-26T07:50:58Z) - Unleashing the Power of Transfer Learning Model for Sophisticated Insect Detection: Revolutionizing Insect Classification [0.520707246175575]
この研究では、MobileNetV2、ResNet152V2、Xecption、Custom CNNといったさまざまなモデルを使用します。
ResNet152V2アーキテクチャに基づく畳み込みニューラルネットワーク(CNN)の構築と評価を行った。
この結果は、昆虫の分類と昆虫学研究における現実世界の応用の可能性を強調している。
論文 参考訳(メタデータ) (2024-06-11T20:52:42Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - Automated Visual Monitoring of Nocturnal Insects with Light-based Camera
Traps [9.274371635733836]
我々は、中央ヨーロッパで撮影された2つの夜行性昆虫、特にハダカメムシの亜種として、夜行性昆虫のデータセットを提示する。
1つのデータセットであるEU-Mothsデータセットは、市民科学者によって手動で取得され、200種の種アノテーションを含んでいる。
第2のデータセットは、95晩に撮影された27,000枚以上の画像で構成されている。
論文 参考訳(メタデータ) (2023-07-28T09:31:36Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNetは、侵入した種を識別し、きめ細かい昆虫種を識別し、挑戦的な背景において効果的に働く。
また、不確実な場合には予測を控え、シームレスな人間の介入を助長し、実用的で信頼できるツールにもなれる。
論文 参考訳(メタデータ) (2023-06-04T23:56:53Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
約1億のパラメータを持つプレーンビジョントランスフォーマーを利用して、リモートセンシングタスク用にカスタマイズされた大規模なビジョンモデルを提案する。
具体的には、RS画像における大きな画像サイズと様々な向きのオブジェクトを扱うために、回転する様々なウィンドウアテンションを提案する。
検出タスクの実験は、DOTA-V1.0データセット上で81.16%のmAPを達成したすべての最先端モデルよりも、我々のモデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-08-08T09:08:40Z) - An Efficient Insect Pest Classification Using Multiple Convolutional
Neural Network Based Models [0.3222802562733786]
昆虫の分類は、様々な種類、スケール、形状、フィールドの複雑な背景、昆虫種間の外観的類似性から難しい課題である。
本研究では、注目、特徴ピラミッド、きめ細かいモデルを含む、さまざまな畳み込みニューラルネットワークベースのモデルを提示する。
実験の結果、これらの畳み込みニューラルネットワークベースのモデルを組み合わせることで、これらの2つのデータセットの最先端の手法よりもパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2021-07-26T12:53:28Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z) - Deformation-aware Unpaired Image Translation for Pose Estimation on
Laboratory Animals [56.65062746564091]
我々は,神経回路が行動をどのようにオーケストレーションするかを研究するために,手動による監督を使わずに,神経科学モデル生物のポーズを捉えることを目的としている。
我々の重要な貢献は、未完成の画像翻訳フレームワークにおける外観、形状、ポーズの明示的で独立したモデリングである。
ショウジョウバエ(ハエ)、線虫(線虫)、ダニオ・レリオ(ゼブラフィッシュ)のポーズ推定精度の向上を実証した。
論文 参考訳(メタデータ) (2020-01-23T15:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。