論文の概要: Revealing Cortical Layers In Histological Brain Images With
Self-Supervised Graph Convolutional Networks Applied To Cell-Graphs
- arxiv url: http://arxiv.org/abs/2311.15262v1
- Date: Sun, 26 Nov 2023 10:33:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-11-28 18:33:02.648971
- Title: Revealing Cortical Layers In Histological Brain Images With
Self-Supervised Graph Convolutional Networks Applied To Cell-Graphs
- Title(参考訳): 自己教師付きグラフ畳み込みネットワークを細胞グラフに適用した脳画像における皮質層の研究
- Authors: Valentina Vadori, Antonella Peruffo, Jean-Marie Gra\"ic, Giulia
Vadori, Livio Finos, Enrico Grisan
- Abstract要約: 大脳皮質の2次元Nissl染色組織スライスにおける層検出のための自己監督的アプローチを導入する。
自己教師付きグラフ畳み込みネットワークは、細胞環境の形態的および構造的特性をコードする細胞埋め込みを生成する。
- 参考スコア(独自算出の注目度): 0.20971479389679332
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Identifying cerebral cortex layers is crucial for comparative studies of the
cytoarchitecture aiming at providing insights into the relations between brain
structure and function across species. The absence of extensive annotated
datasets typically limits the adoption of machine learning approaches, leading
to the manual delineation of cortical layers by neuroanatomists. We introduce a
self-supervised approach to detect layers in 2D Nissl-stained histological
slices of the cerebral cortex. It starts with the segmentation of individual
cells and the creation of an attributed cell-graph. A self-supervised graph
convolutional network generates cell embeddings that encode morphological and
structural traits of the cellular environment and are exploited by a community
detection algorithm for the final layering. Our method, the first
self-supervised of its kind with no spatial transcriptomics data involved,
holds the potential to accelerate cytoarchitecture analyses, sidestepping
annotation needs and advancing cross-species investigation.
- Abstract(参考訳): 大脳皮質の層を同定することは、脳構造と種間の機能の関係に関する洞察を提供することを目的とした細胞構造の比較研究に不可欠である。
広範な注釈付きデータセットがないことは、通常、機械学習アプローチの採用を制限するものであり、神経解剖学者による皮質層の手作業による記述につながる。
大脳皮質の2次元Nissl染色組織スライスにおける層検出のための自己監督的アプローチを導入する。
それは、個々の細胞のセグメンテーションと、属性付きセルグラフの作成から始まる。
自己教師付きグラフ畳み込みネットワークは、細胞環境の形態的および構造的特性を符号化した細胞埋め込みを生成し、最終層化のためのコミュニティ検出アルゴリズムにより活用する。
本手法は, 空間的トランスクリプトミクスデータを含まない, 自己管理した最初の手法であり, 細胞構造解析の促進, アノテーションニーズの回避, 種間調査の進展を期待できる。
関連論文リスト
- Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - NCIS: Deep Color Gradient Maps Regression and Three-Class Pixel
Classification for Enhanced Neuronal Cell Instance Segmentation in
Nissl-Stained Histological Images [0.5273938705774914]
本稿では,Nissl-stained histological image of the brainにおいて,単一神経細胞を自動分離するエンド・ツー・エンドの枠組みを提案する。
エンコーダとしてEfficientNetと2つのデコードブランチを備えたU-Netライクなアーキテクチャを用いて、4つの勾配カラーマップを復元し、ピクセルをタッチセル、細胞体、背景の間の輪郭に分類する。
この方法は大脳皮質と小脳の画像でテストされ、最近の深層学習による細胞のインスタンス分割のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-06-27T20:22:04Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
ほとんどのニューラルネットワークに基づく手法は、局所的な畳み込みの受容領域に影響を受けている。
本稿では,核輪郭を順にサンプリングした点列に変換する新しい多角構造特徴学習機構を提案する。
次に、核をノードとするグラフ構造に組織像を変換し、その表現に核の空間分布を埋め込むグラフニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2023-02-22T14:52:06Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
マウス脳組織サンプルにおける脳領域の予測に対する神経オペレーターの適用の有効性を検証するために,様々なグラフニューラルネットワークアプローチを取り入れた研究を提案する。
グラフニューラルネットワークのアプローチでは,F1スコアが72%近く向上し,すべてのベースラインやグラフネットワークのアプローチを上回った。
論文 参考訳(メタデータ) (2023-02-01T18:32:06Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
細胞核のセマンティックセグメンテーションのための新しいアーキテクチャを提案する。
このアーキテクチャは、新しい神経可塑性グラフアテンションネットワークで構成されている。
実験的な評価では、我々のフレームワークは最先端のニューラルネットワークのアンサンブルよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T22:19:14Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Contrastive Representation Learning for Whole Brain Cytoarchitectonic
Mapping in Histological Human Brain Sections [0.4588028371034407]
本稿では,顕微鏡画像パッチを頑健な微細構造特徴に符号化するための対照的な学習手法を提案する。
この学習課題を用いて事前学習したモデルは、最近提案された補助課題に基づいて事前学習したモデルと同様に、スクラッチから訓練したモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-25T16:44:23Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。