UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation
- URL: http://arxiv.org/abs/2311.15296v3
- Date: Fri, 24 May 2024 03:29:14 GMT
- Title: UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation
- Authors: Xun Liang, Shichao Song, Simin Niu, Zhiyu Li, Feiyu Xiong, Bo Tang, Yezhaohui Wang, Dawei He, Peng Cheng, Zhonghao Wang, Haiying Deng,
- Abstract summary: Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing.
LLMs often produce hallucinated text, compromising their practical utility in professional contexts.
We have developed an Unconstrained Hallucination Generation Evaluation benchmark, designed to compile outputs produced with minimal restrictions.
- Score: 18.22773343923806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.
Related papers
- Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models [0.0]
Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation.
Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations.
This paper provides an empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs.
arXiv Detail & Related papers (2024-10-25T08:34:53Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models.
This paper introduces THaMES, an integrated framework and library addressing this gap.
THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-09-17T16:55:25Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
"Hallucination" refers to instances where large language models (LLMs) generate factually inaccurate or ungrounded information.
We introduce a novel pre-language self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model's familiarity with the concepts present in the input instruction.
We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-09-06T01:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.