論文の概要: Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference
- arxiv url: http://arxiv.org/abs/2311.15316v4
- Date: Wed, 04 Dec 2024 04:08:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 11:46:58.251721
- Title: Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference
- Title(参考訳): Sibyl:知覚的・視覚的コモンセンス推論による大規模言語モデルにおける共感的対話生成
- Authors: Lanrui Wang, Jiangnan Li, Chenxu Yang, Zheng Lin, Hongyin Tang, Huan Liu, Yanan Cao, Jingang Wang, Weiping Wang,
- Abstract要約: 感性とビジョンコモンセンス知識(Sibyl)という革新的な枠組みを提示する。
それは、より共感的な反応を引き出すことを目的として、すぐに続く対話に集中するように設計されている。
実験結果から,LLMにコモンセンス知識を習得するためのパラダイムを取り入れることで,その応答の質を総合的に向上することが示された。
- 参考スコア(独自算出の注目度): 40.96005200292604
- License:
- Abstract: Recently, there has been a heightened interest in building chatbots based on Large Language Models (LLMs) to emulate human-like qualities in multi-turn conversations. Despite having access to commonsense knowledge to better understand the psychological aspects and causality of dialogue context, even these powerful LLMs struggle to achieve the goals of empathy and emotional support. Current commonsense knowledge derived from dialogue contexts is inherently limited and often fails to adequately anticipate the future course of a dialogue. This lack of foresight can mislead LLMs and hinder their ability to provide effective support. In response to this challenge, we present an innovative framework named Sensible and Visionary Commonsense Knowledge (Sibyl). Designed to concentrate on the immediately succeeding dialogue, this paradigm equips LLMs with the capability to uncover the implicit requirements of the conversation, aiming to elicit more empathetic responses. Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses.
- Abstract(参考訳): 近年,Large Language Models (LLMs) に基づくチャットボット構築への関心が高まっている。
会話の文脈の心理的側面や因果関係をよりよく理解するために常識的知識にアクセスできるにもかかわらず、これらの強力なLLMでさえ共感と感情的支援の目標を達成するのに苦労している。
対話の文脈から派生した現在の常識知識は本質的に限定的であり、しばしば対話の今後の進路を適切に予測できない。
この監視の欠如は、LCMを誤解させ、効果的に支援する能力を妨げる可能性がある。
この課題に対応するために、我々はSensible and Visionary Commonsense Knowledge (Sibyl)という革新的なフレームワークを提示する。
このパラダイムは、すぐに成功する対話に集中するために設計されたもので、会話の暗黙の要求を明らかにする能力を持ち、より共感的な反応を引き出すことを目的としている。
実験結果から,LLMにコモンセンス知識を習得するためのパラダイムを取り入れることで,その応答の質を総合的に向上することが示された。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Data Augmentation of Multi-turn Psychological Dialogue via Knowledge-driven Progressive Thought Prompting [46.919537239016734]
大規模言語モデル(LLM)はマルチターン対話の実装を単純化した。
心理的対話のような低リソース領域で満足なパフォーマンスを実現することは依然として困難です。
心理学的対話を生成するための LLM 指導のための知識駆動型進歩的思考促進手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T12:02:56Z) - An Iterative Associative Memory Model for Empathetic Response Generation [22.68709119989059]
共感的応答生成は、対話発話における認知的状態と感情的状態を理解することを目的としている。
共感応答生成のための反復連想記憶モデル(IAMM)を提案する。
論文 参考訳(メタデータ) (2024-02-28T00:49:06Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
大規模言語モデル(LLM)は、流動的で一貫性があり多様な応答を生成する。
しかし、それらは重要な能力、コミュニケーションスキルを欠いている。
本稿は,内的モノローグによるLLMのコミュニケーション能力向上を目的としている。
実験の結果,提案したCSIM戦略はバックボーンモデルを改善し,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T16:19:42Z) - SoulChat: Improving LLMs' Empathy, Listening, and Comfort Abilities
through Fine-tuning with Multi-turn Empathy Conversations [19.11368665202549]
心理学的なカウンセリングの分野で大きな言語モデルを適用する場合、彼らはしばしば普遍的なアドバイスを提供する。
我々は200万以上のサンプルからなるマルチターン共感的会話データセットを構築した。
複数回対話履歴を用いて微調整すると,LLMの共感能力が著しく向上することを示した。
論文 参考訳(メタデータ) (2023-11-01T03:49:52Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
影響認識は人間のコミュニケーションにおいて重要な役割を担っている。
本研究では,会話における人間の影響を認識するための言語モデル(LLM)の能力について検討する。
論文 参考訳(メタデータ) (2023-09-22T14:11:23Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
本研究は, 明瞭化, 目標誘導, 非協調対話の3つの側面に焦点をあてる。
LLMの能動性を高めるために,プロアクティブ・チェーン・オブ・ソート・プロンプト方式を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:49:35Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。