論文の概要: Data Augmentation of Multi-turn Psychological Dialogue via Knowledge-driven Progressive Thought Prompting
- arxiv url: http://arxiv.org/abs/2406.16567v1
- Date: Mon, 24 Jun 2024 12:02:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:54:27.362314
- Title: Data Augmentation of Multi-turn Psychological Dialogue via Knowledge-driven Progressive Thought Prompting
- Title(参考訳): 知識駆動型進歩的思考プロンプティングによる多ターン心理学対話のデータ増強
- Authors: Jiyue Jiang, Liheng Chen, Sheng Wang, Lingpeng Kong, Yu Li, Chuan Wu,
- Abstract要約: 大規模言語モデル(LLM)はマルチターン対話の実装を単純化した。
心理的対話のような低リソース領域で満足なパフォーマンスを実現することは依然として困難です。
心理学的対話を生成するための LLM 指導のための知識駆動型進歩的思考促進手法を提案する。
- 参考スコア(独自算出の注目度): 46.919537239016734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing dialogue data augmentation (DA) techniques predominantly focus on augmenting utterance-level dialogues, which makes it difficult to take dialogue contextual information into account. The advent of large language models (LLMs) has simplified the implementation of multi-turn dialogues. Due to absence of professional understanding and knowledge, it remains challenging to deliver satisfactory performance in low-resource domain, like psychological dialogue dialogue. DA involves creating new training or prompting data based on the existing data, which help the model better understand and generate psychology-related responses. In this paper, we aim to address the issue of multi-turn dialogue data augmentation for boosted performance in the psychology domain. We propose a knowledge-driven progressive thought prompting method to guide LLM to generate multi-turn psychology-related dialogue. This method integrates a progressive thought generator, a psychology knowledge generator, and a multi-turn dialogue generator. The thought generated by the progressive thought generator serves as a prompt to prevent the generated dialogue from having significant semantic deviations, while the psychology knowledge generator produces psychological knowledge to serve as the dialogue history for the LLM, guiding the dialogue generator to create multi-turn psychological dialogue. To ensure the precision of multi-turn psychological dialogue generation by LLM, a meticulous professional evaluation is required. Extensive experiments conducted on three datasets related to psychological dialogue verify the effectiveness of the proposed method.
- Abstract(参考訳): 既存の対話データ拡張(DA)技術は、主に発話レベルの対話を強化することに焦点を当てており、対話コンテキスト情報を考慮に入れるのが困難である。
大規模言語モデル(LLM)の出現により、マルチターン対話の実装が簡略化された。
専門的な理解と知識が欠如しているため、心理的対話のような低リソース領域で満足なパフォーマンスを実現することは依然として困難である。
DAは、既存のデータに基づいて、新たなトレーニングを作成したり、データをプロンプトすることで、モデルが心理学関連の反応をよりよく理解し、生成するのに役立つ。
本稿では,心理学領域におけるパフォーマンス向上のためのマルチターン対話データ拡張の課題に対処することを目的とする。
本稿では,LLMを多ターン心理学関連対話に導くための知識駆動型進歩的思考促進手法を提案する。
この方法は、進歩的思考生成装置、心理学知識生成装置、多ターン対話生成装置を統合する。
プログレッシブ思考生成装置が生成した思考は、生成した対話が有意な意味的偏差を生じないようにするためのプロンプトとして機能し、心理学知識生成装置は、LLMの対話履歴として機能する心理学的知識を生成し、対話生成装置を誘導してマルチターン心理学的対話を生成する。
LLMによるマルチターン心理学的対話生成の精度を確保するためには、綿密な専門家による評価が必要である。
心理学的対話に関連する3つのデータセットを用いて実験を行い,提案手法の有効性を検証した。
関連論文リスト
- An Iterative Associative Memory Model for Empathetic Response Generation [22.68709119989059]
共感的応答生成は、対話発話における認知的状態と感情的状態を理解することを目的としている。
共感応答生成のための反復連想記憶モデル(IAMM)を提案する。
論文 参考訳(メタデータ) (2024-02-28T00:49:06Z) - SMILE: Single-turn to Multi-turn Inclusive Language Expansion via
ChatGPT for Mental Health Support [28.370263099251638]
SMILEは、ChatGPTが公開のシングルターン対話をマルチターン言語に書き換えるよう促すマルチターン包括的言語拡張技術である。
我々は55,165の対話からなる大規模で多種多様な高品質な対話データセットSmileChatを作成し、対話毎に平均10.4回転する。
SmileChatの全体的な品質を評価するために,82のカウンセリング対話からなる実生活チャットデータセットをモデル評価のために収集した。
論文 参考訳(メタデータ) (2023-04-30T11:26:10Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
会話における感情認識(英: emotion recognition in conversation、ERC)とは、2つ以上の発話を含む会話に焦点を当てた感情認識のサブフィールドである。
我々は,宣言的テンプレート言語である確率的ソフト論理(PSL)にアプローチを実装した。
PSLは、ニューラルモデルからPSLモデルへの結果の取り込みのための機能を提供する。
提案手法を最先端の純粋ニューラルネットワークERCシステムと比較した結果,約20%の改善が得られた。
論文 参考訳(メタデータ) (2022-07-14T23:59:06Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - Speaker and Time-aware Joint Contextual Learning for Dialogue-act
Classification in Counselling Conversations [15.230185998553159]
我々は、カウンセリング会話における対話行動分類のためのプラットフォームを提供するために、HOPEと呼ばれる新しいデータセットを開発した。
私たちは、YouTubeで公開されているカウンセリングセッションビデオから12.9Kの発話を収集し、それらの転写文を抽出し、DACラベルで注釈付けします。
対話行動分類のための新しい話者認識型・時間認識型文脈学習システムであるSPARTAを提案する。
論文 参考訳(メタデータ) (2021-11-12T10:30:30Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z) - DialogBERT: Discourse-Aware Response Generation via Learning to Recover
and Rank Utterances [18.199473005335093]
本稿では,従来の PLM に基づく対話モデルを強化した対話応答生成モデルである DialogBERT を提案する。
発話間の談話レベルのコヒーレンスを効果的に把握するために,マスク付き発話回帰を含む2つの訓練目標を提案する。
3つのマルチターン会話データセットの実験により、我々のアプローチがベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2020-12-03T09:06:23Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
本稿では, 対話状態の段階的追跡を, バックエンドデータの助けを借りて行うことを提案する。
実験の結果,MultiWOZ 2.1の連立信条精度は38.6%向上した。
論文 参考訳(メタデータ) (2020-05-27T02:05:33Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。