FRAC-Q-Learning: A Reinforcement Learning with Boredom Avoidance Processes for Social Robots
- URL: http://arxiv.org/abs/2311.15327v5
- Date: Fri, 13 Sep 2024 06:53:57 GMT
- Title: FRAC-Q-Learning: A Reinforcement Learning with Boredom Avoidance Processes for Social Robots
- Authors: Akinari Onishi,
- Abstract summary: We propose a new reinforcement learning method specialized for the social robot, the FRAC-Q-learning, that can avoid user boredom.
The proposed algorithm consists of a forgetting process in addition to randomizing and categorizing processes.
The FRAC-Q-learning showed significantly higher trend of interest score, and indicated significantly harder to bore users compared to the traditional Q-learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The reinforcement learning algorithms have often been applied to social robots. However, most reinforcement learning algorithms were not optimized for the use of social robots, and consequently they may bore users. We proposed a new reinforcement learning method specialized for the social robot, the FRAC-Q-learning, that can avoid user boredom. The proposed algorithm consists of a forgetting process in addition to randomizing and categorizing processes. This study evaluated interest and boredom hardness scores of the FRAC-Q-learning by a comparison with the traditional Q-learning. The FRAC-Q-learning showed significantly higher trend of interest score, and indicated significantly harder to bore users compared to the traditional Q-learning. Therefore, the FRAC-Q-learning can contribute to develop a social robot that will not bore users. The proposed algorithm has a potential to apply for Web-based communication and educational systems. This paper presents the entire process, detailed implementation and a detailed evaluation method of the of the FRAC-Q-learning for the first time.
Related papers
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Online Context Learning for Socially-compliant Navigation [49.609656402450746]
This letter introduces an online context learning method that aims to empower robots to adapt to new social environments online.
Experiments using a community-wide simulator show that our method outperforms the state-of-the-art ones.
arXiv Detail & Related papers (2024-06-17T12:59:13Z) - Coupling Machine Learning with Ontology for Robotics Applications [0.0]
The lack of availability of prior knowledge in dynamic scenarios is without doubt a major barrier for scalable machine intelligence.
My view of the interaction between the two tiers intelligence is based on the idea that when knowledge is not readily available at the knowledge base tier, more knowledge can be extracted from the other tier.
arXiv Detail & Related papers (2024-06-08T23:38:03Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Hybrid Learning for Orchestrating Deep Learning Inference in Multi-user
Edge-cloud Networks [3.7630209350186807]
Collaborative end-edge-cloud computing for deep learning provides a range of performance and efficiency.
Deep Learning inference orchestration strategy employs reinforcement learning to find the optimal orchestration policy.
We demonstrate efficacy of our HL strategy through experimental comparison with state-of-the-art RL-based inference orchestration.
arXiv Detail & Related papers (2022-02-21T21:50:50Z) - Robot Navigation in a Crowd by Integrating Deep Reinforcement Learning
and Online Planning [8.211771115758381]
It is still an open and challenging problem for mobile robots navigating along time-efficient and collision-free paths in a crowd.
Deep reinforcement learning is a promising solution to this problem.
We propose a graph-based deep reinforcement learning method, SG-DQN.
Our model can help the robot better understand the crowd and achieve a high success rate of more than 0.99 in the crowd navigation task.
arXiv Detail & Related papers (2021-02-26T02:17:13Z) - A Novel Update Mechanism for Q-Networks Based On Extreme Learning
Machines [0.6445605125467573]
Extreme Q-Learning Machine (EQLM) is applied to a reinforcement learning problem in the same manner as gradient based updates.
We compare its performance to a typical Q-Network on the cart-pole task.
We show EQLM has similar long-term learning performance to a Q-Network.
arXiv Detail & Related papers (2020-06-04T16:16:13Z) - Augmented Q Imitation Learning (AQIL) [20.909770125018564]
In imitation learning the machine learns by mimicking the behavior of an expert system whereas in reinforcement learning the machine learns via direct environment feedback.
This paper proposes Augmented Q-Imitation-Learning, a method by which deep reinforcement learning convergence can be accelerated.
arXiv Detail & Related papers (2020-03-31T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.