Hybrid Learning for Orchestrating Deep Learning Inference in Multi-user
Edge-cloud Networks
- URL: http://arxiv.org/abs/2202.11098v1
- Date: Mon, 21 Feb 2022 21:50:50 GMT
- Title: Hybrid Learning for Orchestrating Deep Learning Inference in Multi-user
Edge-cloud Networks
- Authors: Sina Shahhosseini, Tianyi Hu, Dongjoo Seo, Anil Kanduri, Bryan
Donyanavard, Amir M.Rahmani, Nikil Dutt
- Abstract summary: Collaborative end-edge-cloud computing for deep learning provides a range of performance and efficiency.
Deep Learning inference orchestration strategy employs reinforcement learning to find the optimal orchestration policy.
We demonstrate efficacy of our HL strategy through experimental comparison with state-of-the-art RL-based inference orchestration.
- Score: 3.7630209350186807
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep-learning-based intelligent services have become prevalent in
cyber-physical applications including smart cities and health-care.
Collaborative end-edge-cloud computing for deep learning provides a range of
performance and efficiency that can address application requirements through
computation offloading. The decision to offload computation is a
communication-computation co-optimization problem that varies with both system
parameters (e.g., network condition) and workload characteristics (e.g.,
inputs). Identifying optimal orchestration considering the cross-layer
opportunities and requirements in the face of varying system dynamics is a
challenging multi-dimensional problem. While Reinforcement Learning (RL)
approaches have been proposed earlier, they suffer from a large number of
trial-and-errors during the learning process resulting in excessive time and
resource consumption. We present a Hybrid Learning orchestration framework that
reduces the number of interactions with the system environment by combining
model-based and model-free reinforcement learning. Our Deep Learning inference
orchestration strategy employs reinforcement learning to find the optimal
orchestration policy. Furthermore, we deploy Hybrid Learning (HL) to accelerate
the RL learning process and reduce the number of direct samplings. We
demonstrate efficacy of our HL strategy through experimental comparison with
state-of-the-art RL-based inference orchestration, demonstrating that our HL
strategy accelerates the learning process by up to 166.6x.
Related papers
- Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
arXiv Detail & Related papers (2024-10-21T07:33:42Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Online Learning for Orchestration of Inference in Multi-User
End-Edge-Cloud Networks [3.6076391721440633]
Collaborative end-edge-cloud computing for deep learning provides a range of performance and efficiency.
We propose a reinforcement-learning-based computation offloading solution that learns optimal offloading policy.
Our solution provides 35% speedup in the average response time compared to the state-of-the-art with less than 0.9% accuracy reduction.
arXiv Detail & Related papers (2022-02-21T21:41:29Z) - Hyperparameter Tuning for Deep Reinforcement Learning Applications [0.3553493344868413]
We propose a distributed variable-length genetic algorithm framework to tune hyperparameters for various RL applications.
Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment.
arXiv Detail & Related papers (2022-01-26T20:43:13Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
Progressive Neural Network Learning is a class of algorithms that incrementally construct the network's topology and optimize its parameters based on the training data.
We propose to speed up this process by exploiting subsets of training data at each incremental training step.
Experimental results in object, scene and face recognition problems demonstrate that the proposed approach speeds up the optimization procedure considerably.
arXiv Detail & Related papers (2020-02-17T18:57:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.