論文の概要: GGNNs : Generalizing GNNs using Residual Connections and Weighted
Message Passing
- arxiv url: http://arxiv.org/abs/2311.15448v1
- Date: Sun, 26 Nov 2023 22:22:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 17:43:57.338239
- Title: GGNNs : Generalizing GNNs using Residual Connections and Weighted
Message Passing
- Title(参考訳): GGNN : 残差接続と重み付きメッセージパッシングを用いたGNNの一般化
- Authors: Abhinav Raghuvanshi and Kushal Sokke Malleshappa
- Abstract要約: GNNはグラフ内の関係やパターンを捕捉し、効果的な学習と予測タスクを可能にする。
GNNの一般化力は、層間のメッセージパッシング機構に起因すると一般的に信じられている。
提案手法は,各ノードにアキュミュレートする前にメッセージを重み付けし,Residual接続を追加することによって,メッセージパッシング機構をさらに改良する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world phenomena can be modeled as a graph, making them extremely
valuable due to their ubiquitous presence. GNNs excel at capturing those
relationships and patterns within these graphs, enabling effective learning and
prediction tasks. GNNs are constructed using Multi-Layer Perceptrons (MLPs) and
incorporate additional layers for message passing to facilitate the flow of
features among nodes. It is commonly believed that the generalizing power of
GNNs is attributed to the message-passing mechanism between layers, where nodes
exchange information with their neighbors, enabling them to effectively capture
and propagate information across the nodes of a graph. Our technique builds on
these results, modifying the message-passing mechanism further: one by weighing
the messages before accumulating at each node and another by adding Residual
connections. These two mechanisms show significant improvements in learning and
faster convergence
- Abstract(参考訳): 多くの実世界の現象はグラフとしてモデル化することができ、その普遍的存在のために非常に価値がある。
GNNはこれらのグラフ内の関係やパターンを捉え、効果的な学習と予測タスクを可能にする。
GNNはMulti-Layer Perceptrons (MLP)を使用して構築され、ノード間の機能のフローを容易にするためにメッセージパッシングのための追加レイヤが組み込まれている。
一般に、GNNの一般化力は、ノードが隣人と情報を交換し、グラフのノード間で情報を効果的に取得し、伝播することができる層間のメッセージパッシング機構に起因していると考えられている。
提案手法は,各ノードにアキュミュレートする前にメッセージを重み付けし,Residual接続を追加することによって,メッセージパッシング機構をさらに改良する。
この2つのメカニズムは学習の大幅な改善とより高速な収束を示す
関連論文リスト
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Graph Ordering Attention Networks [22.468776559433614]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに関わる多くの問題でうまく使われている。
近隣ノード間のインタラクションをキャプチャする新しいGNNコンポーネントであるグラフ順序付け注意層(GOAT)を導入する。
GOATレイヤは、複雑な情報をキャプチャするグラフメトリクスのモデリングにおけるパフォーマンスの向上を示す。
論文 参考訳(メタデータ) (2022-04-11T18:13:19Z) - Generalizing Aggregation Functions in GNNs:High-Capacity GNNs via
Nonlinear Neighborhood Aggregators [14.573383849211773]
グラフニューラルネットワーク(GNN)は多くのグラフ学習タスクで大きな成功を収めている。
既存のGNNは主に、メッセージの伝搬に線形近傍集約(平均,sum)または最大アグリゲータ(max aggregator)を採用する。
我々は、GNNにおけるメッセージ伝達機構を再考し、GNNにおける近隣情報集約のための一般的な非線形アグリゲータの開発を目指す。
論文 参考訳(メタデータ) (2022-02-18T11:49:59Z) - DPGNN: Dual-Perception Graph Neural Network for Representation Learning [21.432960458513826]
グラフニューラルネットワーク(GNN)は近年注目を集め、グラフベースのタスクの多くで顕著なパフォーマンスを実現している。
既存のGNNの多くは、メッセージパッシングパラダイムに基づいて、1つのトポロジ空間内の近隣情報を反復的に集約している。
本稿では,マルチステップメッセージソースの特性,ノード固有のメッセージ出力,マルチスペースメッセージインタラクションに基づく新しいメッセージパッシングパラダイムを提案する。
論文 参考訳(メタデータ) (2021-10-15T05:47:26Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。