Simulating Open Quantum Systems Using Hamiltonian Simulations
- URL: http://arxiv.org/abs/2311.15533v3
- Date: Wed, 24 Apr 2024 20:53:43 GMT
- Title: Simulating Open Quantum Systems Using Hamiltonian Simulations
- Authors: Zhiyan Ding, Xiantao Li, Lin Lin,
- Abstract summary: We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, differential equations, and Hamiltonian simulations.
We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order.
This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits.
- Score: 4.328210085579236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order. This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postselection in measurement outcomes, ensuring a success probability of one at each stage. Our method can be directly generalized to the time-dependent setting. We provide numerical examples that simulate both time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Quantum Simulation of Lindbladian Dynamics via Repeated Interactions [0.5097809301149342]
We make use of an approximate correspondence between Lindbladian dynamics and evolution based on Repeated Interaction (RI) CPTP maps.
We show that the number of interactions needed to simulate the Liouvillian $etmathcalL$ within error $epsilon$ scales in a weak coupling limit.
arXiv Detail & Related papers (2023-12-08T21:17:16Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Quantum algorithm for time-dependent Hamiltonian simulation by
permutation expansion [6.338178373376447]
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians.
We demonstrate that the cost of the algorithm is independent of the Hamiltonian's frequencies.
arXiv Detail & Related papers (2021-03-29T05:02:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Koopman-von Neumann Approach to Quantum Simulation of Nonlinear
Classical Dynamics [0.0]
Quantum computers can be used to simulate nonlinear non-Hamiltonian classical dynamics on phase space.
Koopman-von Neumann formulation implies that the conservation of the probability distribution function on phase space can be recast as an equivalent Schr"odinger equation on Hilbert space.
Quantum simulation of classical dynamics is exponentially more efficient than a deterministic Eulerian discretization of the Liouville equation.
arXiv Detail & Related papers (2020-03-22T19:47:19Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z) - Efficient simulation of sparse Markovian quantum dynamics [13.996412562440891]
We give the first efficient quantum algorithms for simulating Markovian quantum dynamics generated by Lindbladians that are not necessarily local.
First, we show how to simulate Lindbladians that act within small invariant subspaces using a quantum algorithm to implement sparse Stinespring isometries.
Second, we develop a method for simulating sparse Lindblad operators by concatenating a sequence of short-time evolutions.
arXiv Detail & Related papers (2016-11-17T02:55:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.