論文の概要: SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using
Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2311.15803v1
- Date: Mon, 27 Nov 2023 13:25:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 15:20:19.233290
- Title: SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using
Neural Radiance Fields
- Title(参考訳): SOAC: ニューラルラジアンス場を用いた時空間オーバーラップ対応マルチセンサ校正
- Authors: Quentin Herau, Nathan Piasco, Moussab Bennehar, Luis Rold\~ao, Dzmitry
Tsishkou, Cyrille Migniot, Pascal Vasseur, C\'edric Demonceaux
- Abstract要約: 自律運転のような急速に進化する領域では、動作精度と安定性を確保するために、異なるモードの複数のセンサーを使用することが不可欠である。
各センサが提供した情報を単一の共通フレームで正確に活用するためには、これらのセンサを正確に校正することが不可欠である。
我々は、共通の表現において異なるモダリティを表現するために、ニューラルラジアンス場(Neural Radiance Fields)の能力を利用する。
- 参考スコア(独自算出の注目度): 5.113388730604524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In rapidly-evolving domains such as autonomous driving, the use of multiple
sensors with different modalities is crucial to ensure high operational
precision and stability. To correctly exploit the provided information by each
sensor in a single common frame, it is essential for these sensors to be
accurately calibrated. In this paper, we leverage the ability of Neural
Radiance Fields (NeRF) to represent different sensors modalities in a common
volumetric representation to achieve robust and accurate spatio-temporal sensor
calibration. By designing a partitioning approach based on the visible part of
the scene for each sensor, we formulate the calibration problem using only the
overlapping areas. This strategy results in a more robust and accurate
calibration that is less prone to failure. We demonstrate that our approach
works on outdoor urban scenes by validating it on multiple established driving
datasets. Results show that our method is able to get better accuracy and
robustness compared to existing methods.
- Abstract(参考訳): 自動運転のような急速に進化する領域では、高い運用精度と安定性を確保するためには、異なるモードを持つ複数のセンサを使用することが不可欠である。
各センサが提供した情報を単一の共通フレームで正確に活用するためには、これらのセンサを正確に校正することが不可欠である。
本稿では,ニューラル・ラジアンス・フィールド(NeRF)を用いて,一般的なボリューム表現における異なるセンサのモダリティを表現し,ロバストかつ高精度な時空間センサキャリブレーションを実現する。
各センサのシーンの可視部分に基づいて分割法を設計することにより,重なり合う領域のみを用いてキャリブレーション問題を定式化する。
この戦略により、より堅牢で正確なキャリブレーションが可能になり、失敗しやすい。
提案手法は、複数の確立された運転データセット上で検証することにより、屋外の都市景観に作用することを示す。
その結果,本手法は既存手法に比べて精度と堅牢性が高いことがわかった。
関連論文リスト
- Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes [56.52618054240197]
本研究では,運転シーンのロバストな意味認識のための条件対応型マルチモーダル融合手法を提案する。
CAFuserは、RGBカメラ入力を用いて環境条件を分類し、複数のセンサの融合を誘導するコンディショントークンを生成する。
MUSESデータセットでは,マルチモーダルパノプティクスセグメンテーションの59.7 PQ,セマンティックセグメンテーションの78.2 mIoU,公開ベンチマークの1位にランクインした。
論文 参考訳(メタデータ) (2024-10-14T17:56:20Z) - UniCal: Unified Neural Sensor Calibration [32.7372115947273]
自動運転車(SDV)には、LiDARとカメラの正確な校正が必要である。
従来のキャリブレーション手法では、制御され構造化されたシーンでキャプチャされたフィデューシャルを利用し、処理を最適化するために対応を計算する。
我々は、複数のLiDARとカメラを備えたSDVを強制的に校正する統合フレームワークUniCalを提案する。
論文 参考訳(メタデータ) (2024-09-27T17:56:04Z) - MOISST: Multimodal Optimization of Implicit Scene for SpatioTemporal
calibration [4.405687114738899]
コンピュータグラフィックスと暗黙のボリュームシーン表現の最近の進歩を利用して、マルチセンサ空間と時間的キャリブレーションの問題に取り組む。
本手法は,非制御・非構造都市環境におけるデータからの高精度でロバストなキャリブレーションを可能にする。
本研究では,都市部における自律走行シナリオにおける手法の精度とロバスト性を実証する。
論文 参考訳(メタデータ) (2023-03-06T11:59:13Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNetは、センサ固有のノイズと外れ値統計を学習するディープフュージョンアプローチである。
実世界のCoRBSとScene3Dデータセットで様々なセンサーの組み合わせで実験を行う。
論文 参考訳(メタデータ) (2022-04-07T10:45:32Z) - CalibDNN: Multimodal Sensor Calibration for Perception Using Deep Neural
Networks [27.877734292570967]
本稿では,マルチモーダルセンサ,特にLiDAR-Cameraペア間の正確な校正のための新しいディープラーニング駆動技術(CalibDNN)を提案する。
全体の処理は、単一のモデルと単一のイテレーションで完全に自動です。
異なる手法と異なるデータセットに対する広範な実験の結果は、最先端の性能を示している。
論文 参考訳(メタデータ) (2021-03-27T02:43:37Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
論文 参考訳(メタデータ) (2021-02-02T15:44:39Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。