Generative AI and US Intellectual Property Law
- URL: http://arxiv.org/abs/2311.16023v1
- Date: Mon, 27 Nov 2023 17:36:56 GMT
- Title: Generative AI and US Intellectual Property Law
- Authors: Cherie M Poland
- Abstract summary: It remains to be seen whether human content creators can retain their intellectual property rights against generative AI software.
Early signs from various courts are mixed as to whether and to what degree the results generated by AI models meet the legal standards of infringement under existing law.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapidity with which generative AI has been adopted and advanced has
raised legal and ethical questions related to the impact on artists rights,
content production, data collection, privacy, accuracy of information, and
intellectual property rights. Recent administrative and case law challenges
have shown that generative AI software systems do not have independent
intellectual property rights in the content that they generate. It remains to
be seen whether human content creators can retain their intellectual property
rights against generative AI software, its developers, operators, and owners
for the misappropriation of the work of human creatives, given the metes and
bounds of existing law. Early signs from various courts are mixed as to whether
and to what degree the results generated by AI models meet the legal standards
of infringement under existing law.
Related papers
- Do Responsible AI Artifacts Advance Stakeholder Goals? Four Key Barriers Perceived by Legal and Civil Stakeholders [59.17981603969404]
The responsible AI (RAI) community has introduced numerous processes and artifacts to facilitate transparency and support the governance of AI systems.
We conduct semi-structured interviews with 19 government, legal, and civil society stakeholders who inform policy and advocacy around responsible AI efforts.
We organize these beliefs into four barriers that help explain how RAI artifacts may (inadvertently) reconfigure power relations across civil society, government, and industry.
arXiv Detail & Related papers (2024-08-22T00:14:37Z) - U Can't Gen This? A Survey of Intellectual Property Protection Methods for Data in Generative AI [4.627725143147341]
We study the concerns regarding the intellectual property rights of training data.
We focus on the properties of generative models that enable misuse leading to potential IP violations.
arXiv Detail & Related papers (2024-04-22T09:09:21Z) - AI Royalties -- an IP Framework to Compensate Artists & IP Holders for AI-Generated Content [3.4410934027154996]
This article investigates how AI-generated content can disrupt central revenue streams of the creative industries.
It reviews the IP and copyright questions related to the input and output of generative AI systems.
arXiv Detail & Related papers (2024-04-05T15:35:08Z) - Uncertain Boundaries: Multidisciplinary Approaches to Copyright Issues in Generative AI [2.669847575321326]
The survey aims to stay abreast of the latest developments and open problems.
It will first outline methods of detecting copyright infringement in mediums such as text, image, and video.
Next, it will delve an exploration of existing techniques aimed at safeguarding copyrighted works from generative models.
arXiv Detail & Related papers (2024-03-31T22:10:01Z) - Generative AI and Copyright: A Dynamic Perspective [0.0]
generative AI is poised to disrupt the creative industry.
The compensation to creators whose content has been used to train generative AI models (the fair use standard) and the eligibility of AI-generated content for copyright protection (AI-copyrightability) are key issues.
This paper aims to better understand the economic implications of these two regulatory issues and their interactions.
arXiv Detail & Related papers (2024-02-27T07:12:48Z) - Copyright Protection in Generative AI: A Technical Perspective [58.84343394349887]
Generative AI has witnessed rapid advancement in recent years, expanding their capabilities to create synthesized content such as text, images, audio, and code.
The high fidelity and authenticity of contents generated by these Deep Generative Models (DGMs) have sparked significant copyright concerns.
This work delves into this issue by providing a comprehensive overview of copyright protection from a technical perspective.
arXiv Detail & Related papers (2024-02-04T04:00:33Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI and Legal Argumentation: Aligning the Autonomous Levels of AI Legal
Reasoning [0.0]
Legal argumentation is a vital cornerstone of justice, underpinning an adversarial form of law.
Extensive research has attempted to augment or undertake legal argumentation via the use of computer-based automation including Artificial Intelligence (AI)
An innovative meta-approach is proposed to apply the Levels of Autonomy (LoA) of AI Legal Reasoning to the maturation of AI and Legal Argumentation (AILA)
arXiv Detail & Related papers (2020-09-11T22:05:40Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z) - Hacia los Comit\'es de \'Etica en Inteligencia Artificial [68.8204255655161]
It is priority to create the rules and specialized organizations that can oversight the following of such rules.
This work proposes the creation, at the universities, of Ethical Committees or Commissions specialized on Artificial Intelligence.
arXiv Detail & Related papers (2020-02-11T23:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.