Vision-Based Incoming Traffic Estimator Using Deep Neural Network on
General Purpose Embedded Hardware
- URL: http://arxiv.org/abs/2311.16125v1
- Date: Sat, 28 Oct 2023 23:33:00 GMT
- Title: Vision-Based Incoming Traffic Estimator Using Deep Neural Network on
General Purpose Embedded Hardware
- Authors: K. G. Zoysa, and S. R. Munasinghe
- Abstract summary: Inappropriate traffic control wastes fuel, time, and the productivity of nations.
Deep neural network (DNN) was trained to infer traffic intensity in each image in real time.
System was implemented on a Raspberry Pi single-board computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic management is a serious problem in many cities around the world. Even
the suburban areas are now experiencing regular traffic congestion.
Inappropriate traffic control wastes fuel, time, and the productivity of
nations. Though traffic signals are used to improve traffic flow, they often
cause problems due to inappropriate or obsolete timing that does not tally with
the actual traffic intensity at the intersection. Traffic intensity
determination based on statistical methods only gives the average intensity
expected at any given time. However, to control traffic accurately, it is
required to know the real-time traffic intensity. In this research, image
processing and machine learning have been used to estimate actual traffic
intensity in real time. General-purpose electronic hardware has been used for
in-situ image processing based on the edge-detection method. A deep neural
network (DNN) was trained to infer traffic intensity in each image in real
time. The trained DNN estimated traffic intensity accurately in 90% of the
real-time images during road tests. The electronic system was implemented on a
Raspberry Pi single-board computer; hence, it is cost-effective for large-scale
deployment.
Related papers
- Traffic control using intelligent timing of traffic lights with reinforcement learning technique and real-time processing of surveillance camera images [0.0]
The optimal timing of traffic lights is determined and applied according to several parameters.
Deep learning methods were used in vehicle detection using the YOLOv9-C model.
The use of transfer learning along with retraining the model on images of Iranian cars has increased the accuracy of the model.
arXiv Detail & Related papers (2024-05-22T00:04:32Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Turning Traffic Monitoring Cameras into Intelligent Sensors for Traffic
Density Estimation [9.096163152559054]
This paper proposes a framework for estimating traffic density using uncalibrated traffic monitoring cameras with 4L characteristics.
The proposed framework consists of two major components: camera calibration and vehicle detection.
The results show that the Mean Absolute Error (MAE) in camera calibration is less than 0.2 meters out of 6 meters, and the accuracy of vehicle detection under various conditions is approximately 90%.
arXiv Detail & Related papers (2021-10-29T15:39:06Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
We provide a practical platform for real-time traffic monitoring using a single CCTV traffic camera.
We adapt a custom YOLOv5 deep neural network model for vehicle/pedestrian detection and an enhanced SORT tracking algorithm.
We also develop a hierarchical traffic modelling solution based on short- and long-term temporal video data stream.
arXiv Detail & Related papers (2021-09-19T16:59:01Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - HOG, LBP and SVM based Traffic Density Estimation at Intersection [4.199844472131922]
High amount of vehicular traffic creates traffic congestion, unwanted delays, pollution, money loss, health issues, accidents, emergency vehicle passage and traffic violations.
Traditional traffic management and control systems fail to tackle this problem.
There's a necessity of an optimized and sensible control system which would enhance the efficiency of traffic flow.
arXiv Detail & Related papers (2020-05-04T18:08:35Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.