On the Effect of Defections in Federated Learning and How to Prevent
Them
- URL: http://arxiv.org/abs/2311.16459v1
- Date: Tue, 28 Nov 2023 03:34:22 GMT
- Title: On the Effect of Defections in Federated Learning and How to Prevent
Them
- Authors: Minbiao Han, Kumar Kshitij Patel, Han Shao, Lingxiao Wang
- Abstract summary: Federated learning is a machine learning protocol that enables a large population of agents to collaborate over multiple rounds to produce a single consensus model.
This work demonstrates the impact of such defections on the final model's robustness and ability to generalize.
We introduce a novel optimization algorithm with theoretical guarantees to prevent defections while ensuring convergence to demonstrate an effective solution for all participating agents.
- Score: 20.305263691102727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a machine learning protocol that enables a large
population of agents to collaborate over multiple rounds to produce a single
consensus model. There are several federated learning applications where agents
may choose to defect permanently$-$essentially withdrawing from the
collaboration$-$if they are content with their instantaneous model in that
round. This work demonstrates the detrimental impact of such defections on the
final model's robustness and ability to generalize. We also show that current
federated optimization algorithms fail to disincentivize these harmful
defections. We introduce a novel optimization algorithm with theoretical
guarantees to prevent defections while ensuring asymptotic convergence to an
effective solution for all participating agents. We also provide numerical
experiments to corroborate our findings and demonstrate the effectiveness of
our algorithm.
Related papers
- A Kernel Perspective on Distillation-based Collaborative Learning [8.971234046933349]
We propose a nonparametric collaborative learning algorithm that does not directly share local data or models in statistically heterogeneous environments.
Inspired by our theoretical results, we also propose a practical distillation-based collaborative learning algorithm based on neural network architecture.
arXiv Detail & Related papers (2024-10-23T06:40:13Z) - Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Joint Training of Deep Ensembles Fails Due to Learner Collusion [61.557412796012535]
Ensembles of machine learning models have been well established as a powerful method of improving performance over a single model.
Traditionally, ensembling algorithms train their base learners independently or sequentially with the goal of optimizing their joint performance.
We show that directly minimizing the loss of the ensemble appears to rarely be applied in practice.
arXiv Detail & Related papers (2023-01-26T18:58:07Z) - A Data-Centric Approach for Improving Adversarial Training Through the
Lens of Out-of-Distribution Detection [0.4893345190925178]
We propose detecting and removing hard samples directly from the training procedure rather than applying complicated algorithms to mitigate their effects.
Our results on SVHN and CIFAR-10 datasets show the effectiveness of this method in improving the adversarial training without adding too much computational cost.
arXiv Detail & Related papers (2023-01-25T08:13:50Z) - Proof of Swarm Based Ensemble Learning for Federated Learning
Applications [3.2536767864585663]
In federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns.
Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications.
We propose PoSw, a novel distributed consensus algorithm for ensemble learning in a federated setting.
arXiv Detail & Related papers (2022-12-28T13:53:34Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - A Theoretical Perspective on Differentially Private Federated Multi-task
Learning [12.935153199667987]
collaborative learning models need to be developed with respect to both privacy and utility concerns.
We propose a new federated multi-task for effective parameter transfer differential privacy to protect at the client level.
We are the first to provide both privacy utility guarantees for such a proposed algorithm.
arXiv Detail & Related papers (2020-11-14T00:53:16Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.