On the Robustness of Decision-Focused Learning
- URL: http://arxiv.org/abs/2311.16487v3
- Date: Thu, 28 Dec 2023 15:14:17 GMT
- Title: On the Robustness of Decision-Focused Learning
- Authors: Yehya Farhat
- Abstract summary: Decision-Focused Learning (DFL) is an emerging learning paradigm that tackles the task of training a machine learning (ML) model to predict missing parameters of an incomplete optimization problem, where the missing parameters are predicted.
DFL trains an ML model in an end-to-end system, by integrating the prediction and optimization tasks, providing better alignment of the training and testing objectives.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision-Focused Learning (DFL) is an emerging learning paradigm that tackles
the task of training a machine learning (ML) model to predict missing
parameters of an incomplete optimization problem, where the missing parameters
are predicted. DFL trains an ML model in an end-to-end system, by integrating
the prediction and optimization tasks, providing better alignment of the
training and testing objectives. DFL has shown a lot of promise and holds the
capacity to revolutionize decision-making in many real-world applications.
However, very little is known about the performance of these models under
adversarial attacks. We adopt ten unique DFL methods and benchmark their
performance under two distinctly focused attacks adapted towards the
Predict-then-Optimize problem setting. Our study proposes the hypothesis that
the robustness of a model is highly correlated with its ability to find
predictions that lead to optimal decisions without deviating from the
ground-truth label. Furthermore, we provide insight into how to target the
models that violate this condition and show how these models respond
differently depending on the achieved optimality at the end of their training
cycles.
Related papers
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization [27.791742749950203]
Decision-Focused Learning can integrate prediction and optimization to improve decision-making outcomes.
MSE treats the errors of all assets equally, but how does DFL reduce errors of different assets differently?
This study aims to investigate how DFL adjusts stock return prediction models to optimize decisions in MVO.
arXiv Detail & Related papers (2024-09-15T10:37:11Z) - Optimization Hyper-parameter Laws for Large Language Models [56.322914260197734]
We present Opt-Laws, a framework that captures the relationship between hyper- parameters and training outcomes.
Our validation across diverse model sizes and data scales demonstrates Opt-Laws' ability to accurately predict training loss.
This approach significantly reduces computational costs while enhancing overall model performance.
arXiv Detail & Related papers (2024-09-07T09:37:19Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities [46.100825429034266]
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality.
This paper provides an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization.
arXiv Detail & Related papers (2023-07-25T15:17:31Z) - Plan To Predict: Learning an Uncertainty-Foreseeing Model for
Model-Based Reinforcement Learning [32.24146877835396]
We propose emphPlan To Predict (P2P), a framework that treats the model rollout process as a sequential decision making problem.
We show that P2P achieves state-of-the-art performance on several challenging benchmark tasks.
arXiv Detail & Related papers (2023-01-20T10:17:22Z) - Revisiting Design Choices in Model-Based Offline Reinforcement Learning [39.01805509055988]
Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies.
This paper compares and designs novel protocols to investigate their interaction with other hyper parameters, such as the number of models, or imaginary rollout horizon.
arXiv Detail & Related papers (2021-10-08T13:51:34Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.