Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization
- URL: http://arxiv.org/abs/2409.09684v1
- Date: Sun, 15 Sep 2024 10:37:11 GMT
- Title: Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization
- Authors: Junhyeong Lee, Inwoo Tae, Yongjae Lee,
- Abstract summary: Decision-Focused Learning can integrate prediction and optimization to improve decision-making outcomes.
MSE treats the errors of all assets equally, but how does DFL reduce errors of different assets differently?
This study aims to investigate how DFL adjusts stock return prediction models to optimize decisions in MVO.
- Score: 27.791742749950203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL's potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study aims to investigate how DFL adjusts stock return prediction models to optimize decisions in MVO, addressing the question: "MSE treats the errors of all assets equally, but how does DFL reduce errors of different assets differently?" Answering this will provide crucial insights into optimal stock return prediction for constructing efficient portfolios.
Related papers
- Gen-DFL: Decision-Focused Generative Learning for Robust Decision Making [48.62706690668867]
Decision-focused generative learning (Gen-DFL) is a novel framework that leverages generative models to adaptively model uncertainty and improve decision quality.
The paper shows, theoretically, that Gen-DFL achieves improved worst-case performance bounds compared to traditional DFL.
arXiv Detail & Related papers (2025-02-08T06:52:11Z) - Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization [29.30269598267018]
This paper addresses the critical disconnect between prediction and decision quality in portfolio optimization.
We exploit the representational power of Large Language Models (LLMs) for investment decisions.
Experiments on S&P100 and DOW30 datasets show that our model consistently outperforms state-of-the-art deep learning models.
arXiv Detail & Related papers (2025-02-02T15:45:21Z) - DFF: Decision-Focused Fine-tuning for Smarter Predict-then-Optimize with Limited Data [7.70699448711673]
Decision-focused learning (DFL) offers an end-to-end approach to the predict-then-optimize (PO) framework by training predictive models directly on decision loss (DL)
Some predictive models are non-differentiable or black-box, which cannot be adjusted using gradient-based methods.
We propose a novel framework, Decision-Focused Fine-tuning (DFF), which embeds the DFL module into the PO pipeline via a novel bias correction module.
arXiv Detail & Related papers (2025-01-03T15:46:25Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - On the Robustness of Decision-Focused Learning [0.0]
Decision-Focused Learning (DFL) is an emerging learning paradigm that tackles the task of training a machine learning (ML) model to predict missing parameters of an incomplete optimization problem, where the missing parameters are predicted.
DFL trains an ML model in an end-to-end system, by integrating the prediction and optimization tasks, providing better alignment of the training and testing objectives.
arXiv Detail & Related papers (2023-11-28T04:34:04Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
This paper introduced key aspects of applying Machine Learning (ML) models, improved trading strategies, and the Quasi-Reversibility Method (QRM) to optimize stock option forecasting and trading results.
arXiv Detail & Related papers (2022-11-29T04:01:16Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
We carry out user studies to assess how people with differing levels of expertise respond to different types of predictive uncertainty.
We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions.
This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
arXiv Detail & Related papers (2020-11-12T02:23:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.